scholarly journals Lippia graveolens (Lamiales: Verbenaceae) and Oryganum vulgare (Lamiales: Lamiaceae) obtained by means of the in vitro propagation technique

Author(s):  
María A. Aguilar Morales ◽  
Armandina De la Cruz Olvera ◽  
E. Archundia-Garduño ◽  
Rosy G. Cruz Monterrosa ◽  
Mayra Díaz-Ramírez ◽  
...  

Objective: The objective of this study was to establish the method of propagation of Oryganum vulgare and Lippia graveolens employing a plant tissue culture technique that decreased the phenolization percentages and increased the multiplication coefficients. Design/ methodology/ approach: The in vitro germination percentage was evaluated in both MS and MS medium + activated carbon. Microcuttings (small shoots) of both species were established in base medium added with different antioxidant agents to decrease the phenolization of explants; the treatments were arranged in a completely randomized block  design. For the propagation phase, a completely randomized factorial design was used, where the auxin/cytokinin phytoregulators, type of explants (axillary buds and leaves), and the species (Lippia graveolens and Oryganum vulgare)  were considered as factors. Results: maximum germination (63.3% ±12.5) was obtained on day 15 ​​in both culture media for L. graveolens and O. vulgare. The use of antioxidant agents mainly activated carbon, increased the in vitro establishment and activation of vegetative buds in both species by up to 90%. There were significant differences in the variables evaluated regarding the treatments, the explant, and the species in the multiplication phase. The combination 1.0/ 0.5 mg L-1 BA/AIB induces callus formation for both species. When used as leaf explants, callus formation was potentiated. Study Limitations / Implications: The results presented are advances from a long-term experiment. Findings/conclusions: The germination of L. graveolens seeds can be achieved in MS medium after 15 days. Microcuttings of both L. graveolens and O. vulgare were successfully established in MS basal medium enriched with 1 g L-1 charcoal that showed low oxidation percentages and induced up to 90% the production of shoots in the explants. The mixture of 1.0/0.5 mg L-1 BA/AIB induces callus formation for both species; when this medium is in contact with leaves as an explant, its formation is potentiated, achieving diameters up to 15 mm. In order to achieve the induction of shoots and roots, buds should be established in MS medium enriched with 0.5 mg L-1 IBA for both species; this mixture encreased the multiplication coefficients

2018 ◽  
Vol 47 (2) ◽  
pp. 538-543
Author(s):  
Rodrigo Kelson S. REZENDE ◽  
Ana Maria N. SCOTON ◽  
Maílson V. JESUS ◽  
Zeva V. PEREIRA ◽  
Fernanda PINTO

Baru (Dipteryx alata Vog.) is a species with great economic and environmental potential; it has popular acceptance, besides being a very productive species. Alternative propagation methods are important for species maintenance and exploration. Thus, micropropagation emerged as an alternative technique, providing genetic stability and the production of a large number of seedlings. The aim of the present investigation was to develop a callus induction protocol for in vitro baru explants. The tested explants were nodal, internodal and foliar segments. The explants were disinfected for 30 seconds in 70% alcohol (v/v) and 2 minutes in sodium hypochlorite (1.25% active chlorine). This was followed by triple washing. The inoculation was carried out in test tubes containing 15 mL MS medium (30 g L-1 sucrose, 6 g L-1 agar and 100 mg L-1 ascorbic acid) supplemented with 2.0 mg L-1 naphthalene acetic acid (NAA). The solution also contained 0.0, 2.5 or 5.0 mg L-1 of 6-benzylaminopurine (BAP) with the pH adjusted to 5.8. In the incubation phase, the explants were cultured for seven days in the dark and then subjected to a photoperiod of 16 hours (43 µmol m-2 s-1) at 25 ± 2 °C. The treatments were studied with 2.5, 5.0, 7.5 or 10.0 mg L-1 BAP additions to the MS. Callus formation, contamination and oxidation evaluations were undertaken. The results obtained when using 2.0 mg L-1 NAA concluded that such a treatment should be used to induce callogenesis from nodal explants, while for the tested baru leaf explants, the best results for callus formation were given by the combination of 2.0 mg L-1 NAA with 2.5 mg L-1 of BAP to.


2015 ◽  
Vol 49 (4) ◽  
pp. 199-204 ◽  
Author(s):  
S Mahmud ◽  
S Akter ◽  
IA Jahan ◽  
S Khan ◽  
A Khaleque ◽  
...  

A protocol was developed to produce large amount of callus in short a period of time from leaf explants of Stevia rebaudiana Bert. The highest amount of white callus was obtained on MS medium supplemented with 2.5 mg/l 2, 4-D and 0.5 mg/l BAP after 3 weeks of inoculating leaf segments. On the other hand, 0.5 mg/l BAP and 1.0 mg/l Kn exhibits poor performance towards callus formation while after using 1.0 mg/l Kn alone did not develop any callus. In this experiment, highest amount of green callus was obtained when MS medium supplemented with 2.5 mg/l NAA and 10% coconut water was used. An improved analytical method HPLC was applied to analyze stevioside extracted from the leaf and callus of Stevia rebaudiana. The stevioside in each sample were analyzed by comparing their retention times with those of the standards. The retention time (RT) of stevioside for leaves were found 14.96 and for callus 13.81 mins. The percentage of stevioside content from leaves and callus was 12.19% and 12.62% respectively DOI: http://dx.doi.org/10.3329/bjsir.v49i4.22621 Bangladesh J. Sci. Ind. Res. 49(4), 199-204, 2014


2019 ◽  
Vol 43 ◽  
Author(s):  
Olga Vladimirovna Mitrofanova ◽  
Irina Vjacheslavovna Mitrofanova ◽  
Tatyana Nikolaevna Kuzmina ◽  
Nina Pavlovna Lesnikova-Sedoshenko ◽  
Sergey Vladimirovich Dolgov

ABSTRACT Apricot is one of the most valuable commercial fruits. In vitro propagation of apricot is very important for rapid multiplication of cultivars with desirable traits and production of cleaning up and virus-free plants. Low frequency of multiplication is the main limiting factor for traditional propagation methods. In this regard, the objective of our investigation was to study the morphogenetic capacity of apricot leaf explants of the promising cultivars ‘Iskorka Tavridy’, ‘Magister’ and ‘Bergeron’ for regeneration system development and solving some breeding questions. The source of explants was in vitro plants regenerated and cultured on QL medium. Leaves were maintained in the dark at 24±1 °C in thermostat for three-four weeks. Morphogenic callus and structures were mainly formed at the central and proximal parts of leaves on MS, QL and WPM media with 1.5 or 2.0 mg L-1 BAP and 1.5 or 2.0 mg L-1 IAA in different combinations, or TDZ (0.6 and 1.3 mg L-1). Callus with adventive buds was transferred to regeneration medium and placed into a growth chamber at 24±1 °C and 16-hour photoperiod with a light intensity of 37.5 μmol m-2 s-1. The best results were obtained when adaxial leaf surface was in contact with the culture medium. Frequency of leaf callus formation on MS medium with 1.5 mg L-1 BAP and 1.5 mg L-1 IAA was higher in the explants of ‘Iskorka Tavridy’ (80.0%) than in - ‘Bergeron’ (50.0%) and ‘Magister’ (36.7%). The best results of callogenesis for ‘Magister’ was obtained on MS medium with 1.3 mg L-1 TDZ (53.3%). Active microshoot regeneration in ‘Iskorka Tavridy’ cultivar was shown on MS medium with BAP and IAA and in ‘Magister’ cultivar - on MS medium with TDZ. Rhizogenesis was obtained on half strength MS medium with 2.0 mg L-1 IBA.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sharone gladies E ◽  
Chithra Devi B. S

We can see Orchids come in a wide variety of shapes, sizes, colours, and textures far beyond the human mind’s imagination. They emerge from seeds in nature, but in the absence of suitable hosts, they do not germinate in sufficient numbers. This problem was solved by using the tissue culture technique for its germination. One of the successful method used for mass propogation of orchid plantlets is in vitro techniques. Therefore, an initial analysis was conducted in order to establish an appropriate procedure for mass multiplication of Arundina graminifolia. MS (Murashige and Skoog) medium was found to be suitable for the asymbiotic seed germination of Arundina graminifolia. Direct protocorm like bodies were induced by using combinations and individual supplement of MS medium with IAA (Indole-3-acetic acid), IBA (Indole-3- butyric acid), BAP (6-Benzylaminopurine) and KIN (Kinetin). Hormone-free MS basal medium was found suitable for the conversion of PLBs (protocorm-like bodies) into complete plantlets


1970 ◽  
Vol 11 ◽  
pp. 101-106 ◽  
Author(s):  
Durga Dutt Shukla ◽  
Nabin Bhattarai ◽  
Bijaya Pant

Ashwagandha (Withania somnifera L.) Dunal] is an important medicinal plant and a major source of alkaloids and steroids (withanolids), which is regularly used in pharmaceutical industries. Various vegetative parts were studied for its mass propagation through tissue culture technique. Seeds were pretreated with GA3 (50 and 100 mgl-1) for 24 h and 80% germination was achieved. All the explants were taken from in-vitro germinated plant. Among the different explants tested, multiple shoot formation was achieved from shoot-tip and nodal explants in MS medium + 0.25, 0.5, and 1.0 mgl-1 kinetin. Nodal explants were selected for mass propagation protocol because it formed maximum number of shoots (16.25 shoots per explant) on MS medium + 1mgl-1 kinetin after eight weeks of culture. Increase in concentration of kinetin was most effective for callus formation. For further multiplication these shoots were sub-cultured on MS +0.5 mgl-1 kinetin. Presence of IAA at 0.5 mgl-1 was most effective medium for rooting of in-vitro propagated shoots. However, hardening was not achieved for these propagated plants. Key words: IAA; IBA; NAA; kinetin; in-vitro multiplication DOI: 10.3126/njst.v11i0.4131Nepal Journal of Science and Technology 11 (2010) 101-106


2019 ◽  
Vol 12 (1) ◽  
pp. 8-17
Author(s):  
Tirtha Juliana ◽  
Mayta Novaliza Isda ◽  
Dyah Iriani

AbstrakGarcinia mangostana L. dikenal dengan sebutan queen of the tropical fruits. Buah manggis terbentuk secara apomiksis yang bersifat rekalsitran. Salah satu cara perbanyakan tanaman manggis adalah dengan teknik kultur in vitro melalui embriogenesis somatik. Embriogenesis somatik manggis dilakukan dengan pembentukan kalus terlebih dahulu. Penelitian ini bertujuan untuk menentukan konsentrasi terbaik BAP dan madu secara tunggal serta kombinasinya dalam pembentukan embriogenesis somatik pada kalus biji manggis asal Bengkalis. Penelitian ini menggunakan rancangan acak kelompok (RAK) dengan pemberian konsentrasi BAP (3 dan 7 mg/L) dan madu (3, 6, dan 9 mL/L), secara baik tunggal maupun kombinasi, pada media Murashige-Skoog (MS) dengan 3 ulangan. Hasil penelitian menunjukkan bahwa pemberian BAP dan madu dalam seluruh perlakuan tersebut berpengaruh terhadap pembentukan fase-fase embriogenesis somatik kalus manggis. Konsentrasi terbaik dalam pembentukan fase embriogenesis somatik diperoleh dari perlakuan 3 mg/L BAP + 9 mL/L madu dengan presentase pembentukan kalus 100%, waktu muncul kalus 10,67 hst, volume kalus 1,33 dan adanya fase embriogenesis somatik berupa globular, hati, dan torpedo.Abstract Garcinia mangostana L. was known as the queen of the tropical fruits. Mangosteen was formed by apomixis which is recalcitrant. One of the methods of mangosteen propagation is by using a tissue culture technique through somatic embryogenesis. Mangosteen somatic embryogenesis occurs preceded by callus formation. This study aimed to determine the best concentration of BAP and honey in single as well as in combination for the formation phase of somatic embryogenesis in the callus of mangosteen from Bengkalis. The study used a randomized block design with the addition of BAP (3 and 7 mg/L) and honey (3; 6; and 9 mL/L) either single or combination in Murashige-Skoog (MS) medium with 3 replications. The results of this study indicated that the addition of BAP and honey in all treatments affected the phases of somatic embryogenesis of  mangosteen callus. The best concentration in the formation of somatic embryogenesis was obtained from, the treatment of 3 mg/L BAP + 9 mL/L which produced 100% of callus formation, with callus emergence time of 10.67 days after plantation, callus volume of 1.33 and the presence of somatic embryogenesis in the form of globular, heart, and torpedo.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 407
Author(s):  
Yung-Ting Tsai ◽  
Kin-Ying To

Wedelia chinensis, belonging to the Asteraceae family, has been used in folk medicine in East and South Asia for the treatment of common inflammatory diseases and protection against liver toxicity. Previously, in vitro propagation through different tissue explants has been reported, including through nodal segments, axillary buds, and shoot tips, whereas leaf segments failed to proliferate. Here, we report on the in vitro propagation of W. chinensis by culturing young leaf explants in MS medium supplemented with 0.5 mg/L α-naphthaleneacetic acid (NAA), 0.75 mg/L thidiazuron (TDZ), 1 mg/L gibberellic acid (GA3), 3.75 mg/L adenine, 3% sucrose, and 0.8% agar at pH 5.8. Calli were observed in all explants derived from the youngest top two leaves, and the average percentage of shoot regeneration was 23% from three independent experiments. Then, several shoots were excised, transferred onto MS basal medium supplemented with 3% sucrose and 0.8% agar at pH 5.8, and cultured in a growth chamber for 1 to 2 months. Roots were easily induced. Finally, plantlets carrying shoots and roots were transferred into soil, and all of them grew healthily in a greenhouse. No morphological variation was observed between the regenerated plantlets and the donor wild-type plants. In addition, we also established root cultures of W. chinensis in culture medium (MS medium, 3 mg/L NAA, 3% sucrose, pH 5.8) with or without 0.8% agar. To the best of our knowledge, this is the first paper reporting plant regeneration from leaf explants in the herbal plant W. chinensis.


HortScience ◽  
2011 ◽  
Vol 46 (3) ◽  
pp. 466-469
Author(s):  
Jin Cui ◽  
Juanxu Liu ◽  
Jianjun Chen ◽  
Richard J. Henny

Chlorophytum amaniense Engl. ‘Fire Flash’ is a popular exotic ornamental foliage plant as a result of its unique coral-colored midribs and petioles and tolerance to interior low light levels. Currently, demand for propagative materials exceeds the availability of seeds. This study was intended to develop an in vitro culture method for rapid propagation of this cultivar. Leaf and sprouted seed explants were cultured on a Murashige and Skoog basal medium supplemented with different cytokinins with 1.1 μM α-naphthalene acetic acid (NAA) or 2.3 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Leaf explants showed poor responses in callus production and no adventitious shoots were obtained. Callus formation frequencies from sprouted seeds were 71% and 85% when induced by 9.8 μM N6-(2-isopentyl) adenine (2iP) with 1.1 μM NAA and 9.1 μM N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (TDZ) with 1.1 μM NAA, respectively. Adventitious shoots occurred after the induced calluses were subcultured on the same concentrations of TDZ or 2iP with NAA. Shoot formation frequencies from calluses cultured on TDZ with NAA and 2iP with NAA were 92% and 85%, and the corresponding mean shoot numbers were 37 and 31 per piece of callus (1 cm3), respectively. Adventitious shoots rooted at 100% after transferring to the basal medium containing 4.4 μM 6-benzylaminopurine (BA) with 2.7 μM NAA. Plantlets, after transplanting to a soilless substrate were easily acclimatized in a shaded greenhouse under a photosynthetic photon flux (PPF) density of 200 μmol·m−2·s−1. Regenerated plants grew vigorously without undesirable basal branching or distorted leaves. This newly established regeneration method can provide the foliage plant industry with a means for rapidly propagating ‘Fire Flash’ liners in a year-round fashion.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 749-752
Author(s):  
Brian W. Trader ◽  
Hope A. Gruszewski ◽  
Holly L. Scoggins ◽  
Richard E. Veilleux

Coreopsis species (tickseed) can be regenerated from leaf segments allowing the possibility to exploit somaclonal variation as a means to develop novel phenotypes. We used true leaf explants from in vitro seedlings of perennial C. grandiflora (A. Gray) Sherff `Domino' and `Sunray' grown on Murashige and Skoog (MS) basal medium. Two of ten seedlings of `Domino' regenerated freely and others were generally recalcitrant. From these two seedlings, designated E2 and H2, shoots were regenerated and acclimatized to the greenhouse. About 175 plants were established and vernalized from which somaclones were selected based on distinct differences in flower orientation and appearance. The selected somaclones were propagated by division and transplanted to the field in August 2001 in a randomized complete block design with three-plant plots and three replications to determine whether novel characteristics persisted through an additional propagation cycle. In the field, plant height, leaf dimension, flowering, and flower dimensions were scored in June and July 2003. Differences were found between somaclones and similarly propagated E2 and H2 for desirable (more petals per flower, greater flowering, shorter plants), undesirable (less flowering, smaller flowers), and neutral (narrower leaves, taller plants) traits. Open-pollinated (OP) seed was collected and germinated and the seedlings from somaclones that differed significantly from E2 and H2 were evaluated. These maternally selected seedlings were overwintered then planted in the field in May 2004. Most traits that differentiated somaclones from E2 and H2 did not persist in the OP seedling population; however variation that was likely introduced through outcrossing resulted in desirable phenotypes with potential for new cultivar development.


2021 ◽  
Vol 13 (1) ◽  
pp. 10844
Author(s):  
Idowu A. OBISESAN ◽  
Ayobola M. A. SAKPERE ◽  
Bamidele J. AMUJOYEGBE ◽  
Michael S. AKINROPO

Pachyrhizus erosus tuber is rich in protein asides its agronomical value as a legume, but the seeds by which it is propagated have very low viability. This study established sterilization protocol and effect of various concentrations of auxins and cytokinins on callus production and shoot regeneration from explants of P. erosus. Explants and seeds were sterilized using sodiumhypochlorite (NaClO) solution (5, 10 and 15% v/v) for 5 and 10 mins. Nodal, stem and leaf explants from in vitro germinated P. erosus and tuber from field grown plant were sterilized and cultured on Murashige and Skoog (MS) medium (control) and MS combined with different concentrations of auxins (NAA and 2, 4-D) and cytokinin (BA and Kinetin) and the cultured explants were monitored in terms of degree of callus formation, morphology and colour of callus and also for shoot induction. The results showed that seeds of P. erosus sterilized with 10% NaClO solution for 10 mins and germinated in vitro is the best way of getting sterile nodal, stem and leaf explants for the in vitro propagation of the plant, while tuber explants could be sterilized with 15% NaClO for 10 minutes. Nodal explants inoculated in MS medium supplemented with 1.0 mg/L BA gave the highest shoot regeneration response, while stem explants inoculated on MS medium supplemented with 1.0 mg/L BA and 0.5 mg/L NAA also gave the highest amount of friable callus. The study concluded that in vitro germinated seeds were the best way of getting explant for P. erosus.


Sign in / Sign up

Export Citation Format

Share Document