scholarly journals Synthesis of silver nanoparticles on a solid surface using a classical photographic method

Author(s):  
Saif Al-Alul

A classical photographic method, the Becquerel method, produces a positive image comprised of silver nanoparticles on a silver surface. The particles are grown by exposing an iodised silver plate to light in the blue or ultraviolet, which initiates the formation of particles, followed by development (growth) with light in the red portion of the spectrum. Because the Becquerel method is essentially a means of producing a surface of patterned nanoparticles, it also has potential technological applications. This thesis is a systematic investigation of the Becquerel method. . It was determined that the initiation of nanoparticles is effective for wavelengths in the range 447 to 254 nm. The sudden rise in nanoparticle production around 447 nm implicates direct excitation of the AgI layer in the initiation step; however, the behaviour of the action spectrum at shorter wavelengths implies an electron-mediated mechanism. It is possible that both direct excitation and electron-mediated processes occur in the ultraviolet. Scanning electron micrographs indicate that nanoparticle morphology may be dependent on the initiation wavelength, with longer wavelengths producing a variety of shapes, while shorter wavelengths produce primarily dots. Nanoparticle growth (development) was achieved with all wavelengths studied; however, shorter wavelengths photons were more effective than longer wavelengths. The results from a study of the aging of the AgI film suggested that there is period of one or two days during which the film ‘matures,’ becoming more effective for nanoparticle production.

2021 ◽  
Author(s):  
Saif Al-Alul

A classical photographic method, the Becquerel method, produces a positive image comprised of silver nanoparticles on a silver surface. The particles are grown by exposing an iodised silver plate to light in the blue or ultraviolet, which initiates the formation of particles, followed by development (growth) with light in the red portion of the spectrum. Because the Becquerel method is essentially a means of producing a surface of patterned nanoparticles, it also has potential technological applications. This thesis is a systematic investigation of the Becquerel method. . It was determined that the initiation of nanoparticles is effective for wavelengths in the range 447 to 254 nm. The sudden rise in nanoparticle production around 447 nm implicates direct excitation of the AgI layer in the initiation step; however, the behaviour of the action spectrum at shorter wavelengths implies an electron-mediated mechanism. It is possible that both direct excitation and electron-mediated processes occur in the ultraviolet. Scanning electron micrographs indicate that nanoparticle morphology may be dependent on the initiation wavelength, with longer wavelengths producing a variety of shapes, while shorter wavelengths produce primarily dots. Nanoparticle growth (development) was achieved with all wavelengths studied; however, shorter wavelengths photons were more effective than longer wavelengths. The results from a study of the aging of the AgI film suggested that there is period of one or two days during which the film ‘matures,’ becoming more effective for nanoparticle production.


2017 ◽  
Vol 83 (18) ◽  
Author(s):  
Angela Chen ◽  
Lydia M. Contreras ◽  
Benjamin K. Keitz

ABSTRACT The biological synthesis of metal nanoparticles has been examined in a wide range of organisms, due to increased interest in green synthesis and environmental remediation applications involving heavy metal ion contamination. Deinococcus radiodurans is particularly attractive for environmental remediation involving metal reduction, due to its high levels of resistance to radiation and other environmental stresses. However, few studies have thoroughly examined the relationships between environmental stresses and the resulting effects on nanoparticle biosynthesis. In this work, we demonstrate cell-free nanoparticle production and study the effects of metal stressor concentrations and identity, temperature, pH, and oxygenation on the production of extracellular silver nanoparticles by D. radiodurans R1. We also report the synthesis of bimetallic silver and gold nanoparticles following the addition of a metal stressor (silver or gold), highlighting how production of these particles is enabled through the application of environmental stresses. Additionally, we found that both the morphology and size of monometallic and bimetallic nanoparticles were dependent on the environmental stresses imposed on the cells. The nanoparticles produced by D. radiodurans exhibited antimicrobial activity comparable to that of pure silver nanoparticles and displayed catalytic activity comparable to that of pure gold nanoparticles. Overall, we demonstrate that biosynthesized nanoparticle properties can be partially controlled through the tuning of applied environmental stresses, and we provide insight into how their application may affect nanoparticle production in D. radiodurans during bioremediation. IMPORTANCE Biosynthetic production of nanoparticles has recently gained prominence as a solution to rising concerns regarding increased bacterial resistance to antibiotics and a desire for environmentally friendly methods of bioremediation and chemical synthesis. To date, a range of organisms have been utilized for nanoparticle formation. The extremophile D. radiodurans, which can withstand significant environmental stresses and therefore is more robust for metal reduction applications, has yet to be exploited for this purpose. Thus, this work improves our understanding of the impact of environmental stresses on biogenic nanoparticle morphology and composition during metal reduction processes in this organism. This work also contributes to enhancing the controlled synthesis of nanoparticles with specific attributes and functions using biological systems.


RSC Advances ◽  
2016 ◽  
Vol 6 (22) ◽  
pp. 18490-18501 ◽  
Author(s):  
J. Helmlinger ◽  
C. Sengstock ◽  
C. Groß-Heitfeld ◽  
C. Mayer ◽  
T. A. Schildhauer ◽  
...  

The influence of silver nanoparticle morphology on their dissolution kinetics in ultrapure water as well as their biological effect on eukaryotic and prokaryotic cells was examined.


2018 ◽  
Vol 4 (12) ◽  
pp. 2146-2159 ◽  
Author(s):  
Ivona Capjak ◽  
Maja Zebić Avdičević ◽  
Maja Dutour Sikirić ◽  
Darija Domazet Jurašin ◽  
Amela Hozić ◽  
...  

pH, electrolytes and surfactants affected the stability of AgNPs in artificial test water system.


RSC Advances ◽  
2016 ◽  
Vol 6 (58) ◽  
pp. 52683-52694 ◽  
Author(s):  
Sruthi Ann Alex ◽  
Debolina Chakraborty ◽  
N. Chandrasekaran ◽  
Amitava Mukherjee

A systematic investigation on the effect of gold nanoparticle morphology and surface functionalization on the differential interaction of HSA was performed.


2019 ◽  
Vol 9 (6-s) ◽  
pp. 58-64 ◽  
Author(s):  
Sunday Adewale AKINTELU ◽  
Aderonke Similoluwa FOLORUNSO ◽  
Olabisi Theresa ADEMOSUN

The need to devise another method of synthesizing nanoparticles from sources that are eco-friendly, non-hazardous and cost effectiveness is of great importance in preventing environmental and health problems. The aim of this study was to evaluate the efficiency of Garcinia kola leaves as reducing and stabilizing agent for silver nanoparticles synthesis. The leaves of Garcinia kola obtained were authenticated, air dried, pulverized and extracted. The extract was mixed with aqueous solution of silver nitrate solution to form silver nanoparticles and were characterized using Ultra violet (UV) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The antibacterial investigation of the synthesized silver nanoparticle was carried out following the disk diffusion method. UV analysis revealed the silver surface plasmon band at 425.18 nm, The FTIR indicated -OH, -C=C- and alkane as the functional groups responsible for the stabilization of the silver nanoparticle formed. The morphological assessment from SEM and TEM analysis confirmed that the silver nanoparticle formed are spherical in shape with an average particle size of 28.80nm.The EDX analysis ascertained that the silver surface plasmon resonance at 2.8–3.2 keV was confirmed the reduction of silver ion (Ag+ to Ag0). The XRD study revealed the crystalline nature of the nanoparticles synthesized. The antibacterial investigation showed high inhibition against the growth of tested bacteria.  This study ascertained that the green synthesis of silver nanoparticle without the use of harmful solvent that are offensive to the environment is achievable.  Keywords: Silver nanoparticles, Biosynthesis, Characterization, Antibacterial activity and Garcinia kola.


2019 ◽  
Vol 22 (6) ◽  
pp. 250-255 ◽  
Author(s):  
Sry Wahyuni ◽  
Syukri Syukri ◽  
Syukri Arief

Studies of green synthesis of nanoparticles mediated by plants extract is extensively explored and studied in recent time due to eco-friendliness, cost-effectiveness, and use a minimum amount of toxic chemicals in the process of inorganic material synthesis. In this study, the immobilization of silver nanoparticles on the surface of titanium dioxide (TiO2) was carried out using Uncaria gambier Roxb. leaf extract as a silver ion (Ag+) reducing agent. The synthesized Ag/TiO2 nanocomposite was characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), and Diffuse Reflectance Spectroscopy (DRS). The formation of silver nanoparticles was confirmed through UV-Vis spectroscopic analysis, which showed a silver surface plasmon resonance (SPR) band at 426 nm. The X-ray diffraction pattern shows that Ag can inhibit the transition of the anatase into rutile phase. The presence of Ag particles in TiO2 can increase the absorption ability from an initial wavelength of 407 nm to 438 nm. Based on the results of Rhodamin B degradation, it can be seen that Ag/TiO2 has a higher photocatalytic activity than bare TiO2 with 99% percent degradation at 120 minutes of irradiation time.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2306
Author(s):  
Aphisit Saenjaiban ◽  
Teeranuch Singtisan ◽  
Panuwat Suppakul ◽  
Kittisak Jantanasakulwong ◽  
Winita Punyodom ◽  
...  

Time–temperature indicators (TTIs) can be important tools in product applications to monitor food quality losses, especially for fruits and vegetables. In this context, the effects of silver nanoparticles (AgNPs) and glycerol on the color change of polydiacetylene/AgNPs (PDA/AgNPs) embedded in carboxymethyl cellulose (CMC) film as time–temperature indicators (TTIs) were investigated. A CMC film prepared with 30 mg/L AgNPs and a 1:3 (v/v) PDA:AgNP ratio exhibited a faster color change than under other conditions. At 35 °C, the films with PDA/AgNPs changed color from purplish-blue to purple and purple to reddish-purple over time due to the higher thermal conductivity of AgNPs and larger PDA surface area exposed to specific temperatures. The total color difference (TCD) of PDA/AgNP-embedded CMC film directly changed with regard to time and temperature. However, adding glycerol to the system resulted in a symmetrical chemical structure, a factor that delayed the color change. Scanning electron micrographs showed AgNPs embedded in the CMC films. Transmission electron micrographs indicated a core-shell structure of PDA/AgNP vesicles in the CMC matrix. PDA/AgNP vesicles were confirmed by second derivative Fourier transform infrared spectroscopy, with a new peak at 1390–1150 cm−1. The kinetics of TTIs from PDA/AgNP-embedded CMC films yielded an activation energy of 58.70 kJ/mol.


RSC Advances ◽  
2017 ◽  
Vol 7 (54) ◽  
pp. 34041-34048 ◽  
Author(s):  
Yaguo Cai ◽  
Xianqing Piao ◽  
Wei Gao ◽  
Zhejuan Zhang ◽  
Er Nie ◽  
...  

A large-scale silver nanoparticle production by microwave treatment for the electronic ink. By drawing on the photo paper, the conductive tracks were realized without any heat treatment.


Sign in / Sign up

Export Citation Format

Share Document