Idea paper: Monitoring and databasing non-native species to manage establishment debt in aquatic ecosystems

2022 ◽  
Author(s):  
Takumi Saito

In the era of globalization, biological invasions are one of the most serious social issues. Thus, managing its impact is an urgent task. It is essential to control non-native species before they become established. However, it is insufficient to address establishment debt, which occurs when a non-native species has been introduced into an area but has not yet been established in the wild. In particular, unintentionally introduced or contaminated organisms of the aquatic ornamental pet trade are referred to as “hitchhikers” and have not received much attention in the context of establishment debt. To understand the nature of establishment debt, including that of aquatic hitchhikers, I propose the monitoring of non-native species inhabiting artificial isolated waters, such as indoor aquariums, and the construction of a database using environmental DNA metabarcoding. This idea would be an effective non-regulatory management approach when implemented broadly, at the country level. Furthermore, implementation of this strategy in combination with border biosecurity and field monitoring may promote accurate prioritization, rapid species identification, and effective invasion pathway assessment.

Author(s):  
Yoshihisa AKAMATSU ◽  
Takayoshi TSUZUKI ◽  
Ryota YOKOYAMA ◽  
Yayoi FUNAHASHI ◽  
Munehiro OHTA ◽  
...  

Author(s):  
Pierre Taberlet ◽  
Aurélie Bonin ◽  
Lucie Zinger ◽  
Eric Coissac

Chapter 10 “Environmental DNA for functional diversity” discusses the potential of environmental DNA to assess functional diversity. It first focuses on DNA metabarcoding and discusses the extent to which this approach can be used and/or optimized to retrieve meaningful information on the functions of the target community. This knowledge usually involves coarsely defined functional groups (e.g., woody, leguminous, graminoid plants; shredders or decomposer soil organisms; pathogenicity or decomposition role of certain microorganisms). Chapter 10 then introduces metagenomics and metatranscriptomics approaches, their advantages, but also the challenges and solutions to appropriately sampling, sequencing these complex DNA/RNA populations. Chapter 10 finally presents several strategies and software to analyze metagenomes/metatranscriptomes, and discusses their pros and cons.


Author(s):  
Pierre Taberlet ◽  
Aurélie Bonin ◽  
Lucie Zinger ◽  
Eric Coissac

Environmental DNA (eDNA), i.e. DNA released in the environment by any living form, represents a formidable opportunity to gather high-throughput and standard information on the distribution or feeding habits of species. It has therefore great potential for applications in ecology and biodiversity management. However, this research field is fast-moving, involves different areas of expertise and currently lacks standard approaches, which calls for an up-to-date and comprehensive synthesis. Environmental DNA for biodiversity research and monitoring covers current methods based on eDNA, with a particular focus on “eDNA metabarcoding”. Intended for scientists and managers, it provides the background information to allow the design of sound experiments. It revisits all steps necessary to produce high-quality metabarcoding data such as sampling, metabarcode design, optimization of PCR and sequencing protocols, as well as analysis of large sequencing datasets. All these different steps are presented by discussing the potential and current challenges of eDNA-based approaches to infer parameters on biodiversity or ecological processes. The last chapters of this book review how DNA metabarcoding has been used so far to unravel novel patterns of diversity in space and time, to detect particular species, and to answer new ecological questions in various ecosystems and for various organisms. Environmental DNA for biodiversity research and monitoring constitutes an essential reading for all graduate students, researchers and practitioners who do not have a strong background in molecular genetics and who are willing to use eDNA approaches in ecology and biomonitoring.


2021 ◽  
Author(s):  
José Luis Mena ◽  
Hiromi Yagui ◽  
Vania Tejeda ◽  
Emilio Bonifaz ◽  
Eva Bellemain ◽  
...  

GigaScience ◽  
2020 ◽  
Vol 9 (12) ◽  
Author(s):  
Haris Zafeiropoulos ◽  
Ha Quoc Viet ◽  
Katerina Vasileiadou ◽  
Antonis Potirakis ◽  
Christos Arvanitidis ◽  
...  

2021 ◽  
Vol 126 ◽  
pp. 107698
Author(s):  
Petr Blabolil ◽  
Lynsey R. Harper ◽  
Štěpánka Říčanová ◽  
Graham Sellers ◽  
Cristina Di Muri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document