scholarly journals The von Willebrand Factor A-1 domain binding aptamer BT200 elevates plasma levels of VWF and Factor VIII: a first-in-human trial

Haematologica ◽  
2021 ◽  
Author(s):  
Katarina D. Kovacevic ◽  
Jürgen Grafeneder ◽  
Christian Schörgenhofer ◽  
Georg Gelbenegger ◽  
Gloria Gager ◽  
...  

Von Willebrand Factor (VWF) and Factor VIII (FVIII) circulate in a noncovalent complex in blood and promote primary haemostasis and clotting respectively. A new VWF A1-domain binding aptamer, BT200, demonstrated good subcutaneous bioavailability and a long half-life in non-human primates. This first-in-human, randomised, placebo-controlled, double-blind trial tested the hypothesis that BT200 is well tolerated and has favourable pharmacokinetic and pharmacodynamic effects in 112 volunteers. Participants received one of the following: Single ascending dose of BT200 (0.18-48mg) subcutaneously, an intravenous dose, BT200 with concomitant desmopressin or multiple doses. Pharmacokinetics were characterised, and the pharmacodynamic effects were measured by VWF levels, FVIII clotting activity, ristocetin induced aggregation, platelet function under high shear rates, and thrombin generation. Mean half-lives ranged from 7-12 days and subcutaneous bioavailability increased dosedependently exceeding 55% for doses of 6-48 mg. By blocking free A1 domains, BT200 dose-dependently decreased ristocetin-induced aggregation, and prolonged collagenadenosine diphosphate and shear-induced platelet plug formation times. However, BT200 also increased VWF antigen and FVIII levels 4-fold (p

1984 ◽  
Vol 52 (01) ◽  
pp. 057-059 ◽  
Author(s):  
E Dejana ◽  
M Furlan ◽  
B Barbieri ◽  
M B Donati ◽  
E A Beck

SummaryRat platelets do not respond to ristocetin in their own plasma nor do they aggregate in the presence of bovine or porcine factor VIII von Willebrand factor (F VIII R:WF) or human F VIII R:WF in presence of ristocetin. However, rat plasma supports ristocetin induced aggregation of washed human platelets. In this study we report on purification of rat F VIII R:WF from cryoprecipitate. Similarly to porcine or bovine material, purified rat F VIII R:WF induced aggregation of human washed fixed platelets. This effect was enhanced by addition of ristocetin and was not modified by addition of albumin. Rat washed platelets were aggregated by ristocetin in the presence of rat or human F VIII R:WF provided that high concentrations of ristocetin are added in a system essentially free of extraneous proteins. Increasing concentrations of albumin dramatically reduced the ability of ristocetin to aggregate rat platelets while human platelet aggregation by human or rat F VIII R:WF was only moderately affected.These studies show that rat F VIII R:WF can interact with rat and human platelets. The lack of response of rat platelets to ristocetin in their own plasma is most likely due to a low sensitivity of rat platelets to this drug and to an inhibitory activity of plasma proteins on this reaction.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3796-3803 ◽  
Author(s):  
Nadine Ajzenberg ◽  
Anne-Sophie Ribba ◽  
Ghassem Rastegar-Lari ◽  
Dominique Meyer ◽  
Dominique Baruch

Abstract The aim was to better understand the function of von Willebrand factor (vWF) A1 domain in shear-induced platelet aggregation (SIPA), at low (200) and high shear rate (4000 seconds-1) generated by a Couette viscometer. We report on 9 fully multimerized recombinant vWFs (rvWFs) expressing type 2M or type 2B von Willebrand disease (vWD) mutations, characterized respectively by a decreased or increased binding of vWF to GPIb in the presence of ristocetin. We expressed 4 type 2M (-G561A, -E596K, -R611H, and -I662F) and 5 type 2B (rvWF-M540MM, -V551F, -V553M, -R578Q, and -L697V). SIPA was strongly impaired in all type 2M rvWFs at 200 and 4000 seconds-1. Decreased aggregation was correlated with ristocetin binding to platelets. In contrast, a distinct effect of botrocetin was observed, since type 2M rvWFs (-G561A, -E596K, and -I662F) were able to bind to platelets to the same extent as wild type rvWF (rvWF-WT). Interestingly, SIPA at 200 and 4000 seconds-1 confirmed the gain-of-function phenotype of the 5 type 2B rvWFs. Our data indicated a consistent increase of SIPA at both low and high shear rates, reaching 95% of total platelets, whereas SIPA did not exceed 40% in the presence of rvWF-WT. Aggregation was completely inhibited by monoclonal antibody 6D1 directed to GPIb, underlining the importance of vWF-GPIb interaction in type 2B rvWF. Impaired SIPA of type 2M rvWF could account for the hemorrhagic syndrome observed in type 2M vWD. Increased SIPA of type 2B rvWF could be responsible for unstable aggregates and explain the fluctuant thrombocytopenia of type 2B vWD.


Blood ◽  
1984 ◽  
Vol 63 (6) ◽  
pp. 1408-1415 ◽  
Author(s):  
HV Stel ◽  
KS Sakariassen ◽  
BJ Scholte ◽  
EC Veerman ◽  
TH van der Kwast ◽  
...  

Abstract We have studied the role of factor VIII-von Willebrand factor (FVIII- vWF) in both platelet adherence to subendothelium and ristocetin- induced platelet aggregation using monoclonal antibodies to human FVIII- vWF. Twenty-five monoclonal antibodies were obtained, two of which were directed to the factor VIII moiety of FVIII-vWF; one of these two completely inhibited the procoagulant activity (FVIII:C). The remaining 23 monoclonal antibodies were directed to the von Willebrand factor moiety of FVIII-vWF. The ability of the latter monoclonal antibodies to inhibit platelet adherence to arterial subendothelium was investigated with a perfusion model. According to the number of platelets adhering to the subendothelium, three groups of monoclonal antibodies could be discerned: (A) antibodies not affecting platelet adherence; (B) antibodies that inhibited platelet adherence to the level as observed when von Willebrand's disease plasma was tested; and (C) antibodies that completely inhibited both platelet adherence to subendothelium and ristocetin-induced platelet aggregation. The two antibodies present in group C competed for the same or closely related epitope(s) present on FVIII-vWF. These results demonstrate that a domain is present on the FVIII-vWF molecule that is associated both with ristocetin-induced aggregation and with the ability of FVIII-vWF to support platelet adherence to the subendothelium. Based on these observations, it is concluded that ristocetin-induced binding of FVIII-vWF to platelets reflects, at least in part, a physiologic mechanism regulating the function of FVIII-vWF in primary hemostasis.


1997 ◽  
Vol 78 (04) ◽  
pp. 1268-1271 ◽  
Author(s):  
Bernd Jilma ◽  
Eva Dirnberger ◽  
Hans-Georg Eichler ◽  
Bettina Matulla ◽  
Leopold Schmetterer ◽  
...  

SummaryBackground: Until now the effects of β-adrenergic agonists have largely been ascribed to their ability to induce intracellular formation of cyclic adenosine monophosphate. Recently evidence has been accumulating that at least some β1 and β2-adrenoceptor effects may be mediated by nitric oxide (NO). Based on these studies, we hypothesized that the β-adrenoceptor mediated increase of von Willebrand factor and factor VIII-activity (FVIII:C) in plasma during exercise, is caused by an NO-dependent mechanism. Methods: Thirteen young healthy subjects finished an exhaustive bicycle exercise protocol while they were infused placebo or the NO-synthase inhibitor N-monomethyl-L-arginine (L-NMMA) on two separate days in a randomized, double blind cross-over design. Findings: During exercise systemic haemo-dynamic changes were parallel in both treatment periods, but L-NMMA caused a partial inhibition of NO-synthase as evidenced by a 30% decrease in exhaled NO. The workload capacities were not different during L-NMMA or placebo infusion. However, under placebo treatment exercise increased vWF-Ag by a maximum of 61% (CI: 43-84; p = 0.002) and FVIII:C by 44% (CI: 31-59; p = 0.001), which was significantly attenuated when subjects were treated with L-NMMA (p <0.05): under L-NMMA treatment vWF-Ag increased by only 25% (CI: 5-51; p = 0.001) and FVIII:C by 12% (CI: 6-39; p = 0.001). Interpretation: Partial blockade of NO-synthase with L-NMMA blunts the exercise-induced increase in vWF-Ag and FVIII:C. Our trial points to a role of endogenous NO-generation in the β2-adrenergic increase in vWF/FVIII. Thus, we propose that physiologic processes which are induced by systemic β2-adrenoceptor stimulation may at least partly be mediated by NO.


Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 1704-1712 ◽  
Author(s):  
Carina J. van Schooten ◽  
Shirin Shahbazi ◽  
Evelyn Groot ◽  
Beatrijs D. Oortwijn ◽  
H. Marijke van den Berg ◽  
...  

Abstract Von Willebrand factor (VWF) and factor VIII (FVIII) circulate in a tight noncovalent complex. At present, the cells that contribute to the removal of FVIII and VWF are of unknown identity. Here, we analyzed spleen and liver tissue sections of VWF-deficient mice infused with recombinant VWF or recombinant FVIII. This analysis revealed that both proteins were targeted to cells of macrophage origin. When applied as a complex, both proteins were codirected to the same macrophages. Chemical inactivation of macrophages using gadolinium chloride resulted in doubling of endogenous FVIII levels in VWF-null mice, and of VWF levels in wild-type mice. Moreover, the survival of infused VWF was prolonged almost 2-fold in VWF-deficient mice after gadolinium chloride treatment. VWF and FVIII also bound to primary human macrophages in in vitro tests. In addition, radiolabeled VWF bound to human THP1 macrophages in a dose-dependent, specific, and saturable manner (half-maximal binding at 0.014 mg/mL). Binding to macrophages was followed by a rapid uptake and subsequent degradation of the internalized protein. This process was also visualized using a VWF–green fluorescent protein fusion protein. In conclusion, our data strongly indicate that macrophages play a prominent role in the clearance of the VWF/FVIII complex.


Blood ◽  
1984 ◽  
Vol 63 (6) ◽  
pp. 1408-1415 ◽  
Author(s):  
HV Stel ◽  
KS Sakariassen ◽  
BJ Scholte ◽  
EC Veerman ◽  
TH van der Kwast ◽  
...  

We have studied the role of factor VIII-von Willebrand factor (FVIII- vWF) in both platelet adherence to subendothelium and ristocetin- induced platelet aggregation using monoclonal antibodies to human FVIII- vWF. Twenty-five monoclonal antibodies were obtained, two of which were directed to the factor VIII moiety of FVIII-vWF; one of these two completely inhibited the procoagulant activity (FVIII:C). The remaining 23 monoclonal antibodies were directed to the von Willebrand factor moiety of FVIII-vWF. The ability of the latter monoclonal antibodies to inhibit platelet adherence to arterial subendothelium was investigated with a perfusion model. According to the number of platelets adhering to the subendothelium, three groups of monoclonal antibodies could be discerned: (A) antibodies not affecting platelet adherence; (B) antibodies that inhibited platelet adherence to the level as observed when von Willebrand's disease plasma was tested; and (C) antibodies that completely inhibited both platelet adherence to subendothelium and ristocetin-induced platelet aggregation. The two antibodies present in group C competed for the same or closely related epitope(s) present on FVIII-vWF. These results demonstrate that a domain is present on the FVIII-vWF molecule that is associated both with ristocetin-induced aggregation and with the ability of FVIII-vWF to support platelet adherence to the subendothelium. Based on these observations, it is concluded that ristocetin-induced binding of FVIII-vWF to platelets reflects, at least in part, a physiologic mechanism regulating the function of FVIII-vWF in primary hemostasis.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3796-3803 ◽  
Author(s):  
Nadine Ajzenberg ◽  
Anne-Sophie Ribba ◽  
Ghassem Rastegar-Lari ◽  
Dominique Meyer ◽  
Dominique Baruch

The aim was to better understand the function of von Willebrand factor (vWF) A1 domain in shear-induced platelet aggregation (SIPA), at low (200) and high shear rate (4000 seconds-1) generated by a Couette viscometer. We report on 9 fully multimerized recombinant vWFs (rvWFs) expressing type 2M or type 2B von Willebrand disease (vWD) mutations, characterized respectively by a decreased or increased binding of vWF to GPIb in the presence of ristocetin. We expressed 4 type 2M (-G561A, -E596K, -R611H, and -I662F) and 5 type 2B (rvWF-M540MM, -V551F, -V553M, -R578Q, and -L697V). SIPA was strongly impaired in all type 2M rvWFs at 200 and 4000 seconds-1. Decreased aggregation was correlated with ristocetin binding to platelets. In contrast, a distinct effect of botrocetin was observed, since type 2M rvWFs (-G561A, -E596K, and -I662F) were able to bind to platelets to the same extent as wild type rvWF (rvWF-WT). Interestingly, SIPA at 200 and 4000 seconds-1 confirmed the gain-of-function phenotype of the 5 type 2B rvWFs. Our data indicated a consistent increase of SIPA at both low and high shear rates, reaching 95% of total platelets, whereas SIPA did not exceed 40% in the presence of rvWF-WT. Aggregation was completely inhibited by monoclonal antibody 6D1 directed to GPIb, underlining the importance of vWF-GPIb interaction in type 2B rvWF. Impaired SIPA of type 2M rvWF could account for the hemorrhagic syndrome observed in type 2M vWD. Increased SIPA of type 2B rvWF could be responsible for unstable aggregates and explain the fluctuant thrombocytopenia of type 2B vWD.


1988 ◽  
Vol 60 (01) ◽  
pp. 030-034 ◽  
Author(s):  
Eva Bastida ◽  
Juan Monteagudo ◽  
Antonio Ordinas ◽  
Luigi De Marco ◽  
Ricardo Castillo

SummaryNative von Willebrand factor (N-vWF) binds to platelets activated by thrombin, ADP or ristocetin. Asialo vWF (As-vWF) induces platelet aggregation in absence of platelet activators. N-vWF mediates platelet adhesion to vessel subendothelium at high shear rates. We have investigated the role of As-vWF in supporting platelet deposition to rabbit vessel subendothelium at a shear rate of 2,000 sec-1, using the Baumgartner perfusion system. We have studied the effects of the addition of As-vWF (from 2 to 12 μg/ml) to perfusates consisting of washed red blood cells, 4% human albumin and washed platelets. Our results show a significant increase in platelet deposition on subendothelium (p <0.01) in perfusions to which As-vWF had been added. Blockage of the platelet glycoproteins Ib and IIb/IIIa (GPIb and GPIIb/IIIa) by specific monoclonal antibodies (LJIb1 and LJCP8, respectively) resulted in a decrease of platelet deposition in both types of perfusates prepared with N-vWF and As-vWF. Our results indicate that As-vWF enhances platelet deposition to vessel subendothelium under flow conditions. Furthermore, they suggest that this effect is mediated by the binding of As-vWF to platelet membrane receptors, which in turn, promote platelet spreading and adhesion to the subendothelium.


Sign in / Sign up

Export Citation Format

Share Document