scholarly journals Enhancement of the Anti-inflammatory Efficacy of Betamethasone Valerate via Niosomal Encapsulation

2021 ◽  
Vol 11 (6) ◽  
pp. 14640-14660

Betamethasone valerate-loaded niosomes were formulated to improve drug anti-inflammatory efficacy and reduce its systemic side effects by providing prolonged and localized drug delivery into the skin. Niosomes were prepared by thin-film hydration using different molar ratios of surfactant, cholesterol, and charge inducers. Formulations were characterized for entrapment efficiency, morphology, size, and zeta potential. In-vitro release and stability studies were conducted on selected formulations. Two niosomal gels were evaluated for spreadability, pH, rheological behavior, ex-vivo skin permeation, and in-vivo anti-inflammatory efficacy. Formulations showed high encapsulation efficiency reaching 92.03±1.88%. Vesicles were spherical in shape, ranging from 123.1 to 782 nm, and had large negative values of zeta-potential. They showed a biphasic release pattern which was more sustained than free drug suspension. Niosomes demonstrated good physicochemical stability under refrigeration for up to 3 months. Niosomal gels exhibited good spreadability, suitable pH values, favorable rheological behavior, and higher skin permeation than the plain gel. In-vivo studies revealed that niosomal gels showed a better sustained anti-inflammatory effect than drug plain gel and the marketed product, which was confirmed by further histopathological examination of paw tissues. Niosomal gels are promising formulations for sustained local delivery of betamethasone valerate.

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 577 ◽  
Author(s):  
Wafaa E. Soliman ◽  
Tamer M. Shehata ◽  
Maged E. Mohamed ◽  
Nancy S. Younis ◽  
Heba S. Elsewedy

Background: Curcumin (Cur) possesses a variety of beneficial pharmacological properties including antioxidant, antimicrobial, anti-cancer and anti-inflammatory activities. Nevertheless, the low aqueous solubility and subsequent poor bioavailability greatly limits its effectiveness. Besides, the role of myrrh oil as an essential oil in treating inflammatory disorders has been recently demonstrated. The objective of the current investigation is to enhance Cur efficacy via developing Cur nanoemulgel, which helps to improve its solubility and permeability, for transdermal delivery. Methods: The formulated preparations (Cur gel, emulgel and nanoemulgel) were evaluated for their physical appearance, spreadability, viscosity, particle size, in vitro release and ex vivo drug permeation studies. The in vivo anti-inflammatory activity was estimated using the carrageenan-induced rat hind paw edema method. Results: The formulated Cur-loaded preparations exhibited good physical characteristics that were in the acceptable range of transdermal preparations. The release of Cur from gel, emulgel and nanoemulgel after 12 h was 72.17 ± 3.76, 51.93 ± 3.81 and 62.0 ± 3.9%, respectively. Skin permeation of Cur was significantly (p < 0.05) improved when formulated into nanoemulgel since it showed the best steady state transdermal flux (SSTF) value (108.6 ± 3.8 µg/cm2·h) with the highest enhancement ratio (ER) (7.1 ± 0.2). In vivo anti-inflammatory studies proved that Cur-loaded nanoemulgel displayed the lowest percent of swelling (26.6% after 12 h). Conclusions: The obtained data confirmed the potential of the nanoemulgel dosage form and established the synergism of myrrh oil and Cur as an advanced anti-inflammatory drug.


2020 ◽  
Vol 15 (4) ◽  
pp. 404-419
Author(s):  
Ruchi Tiwari ◽  
Gaurav Tiwari ◽  
Rachna Singh

Background: The present study assessed the transdermal potential of transferosomes loaded with allopurinol for the treatment of gout. Methods: Transferosomes of allopurinol were composed of different ratios of tween-80, soya lecithin and solvent using a thin-film hydration method. Transferosomes were characterized for Scanning Electron Microscopy (SEM), zeta potential, % entrapment efficiency (%EE), Fourier Transform Infrared Spectroscopy (FTIR), in-vitro drug release and kinetics as well as stability. Then, optimized formulation was incorporated in gel and evaluated for viscosity, pH, extrudability, homogeneity, skin irritation study, spreadability, ex vivo skin permeation study, flux, and stability. Results: SEM studies suggested that vesicles were spherical and zeta potential were in the range of -11.4 mV to -29.6 mV and %EE was 52.4- 83.87%. FTIR study revealed that there was no interaction between allopurinol and excipients during the preparation of transferosomes. The cumulative percentage of drug release from various transferosomes was ranged from 51.87 to 81.87%. A transferosomal gel of F8 formulation was prepared using dispersion method reported pseudoplastic rheological behavior, optimum pH, spreadability and maximum drug permeation i.e. 79.84% with flux 13.06 g/cm2/hr, followed zero-order release kinetics. Irritation and in-vivo studies of optimized transferosomal gel G8 on rabbits revealed better results than the standard allopurinol. Conclusion: This research suggested that allopurinol loaded transferosomal gel can be potentially used as a transdermal drug delivery system for the treatment of gout.


Author(s):  
Y Madhusudan Rao ◽  
Gayatri P ◽  
Ajitha M ◽  
P. Pavan Kumar ◽  
Kiran kumar

Present investigation comprises the study of ex-vivo skin flux and in-vivo pharmacokinetics of Thiocolchicoside (THC) from transdermal films. The films were fabricated by solvent casting technique employing combination of hydrophilic and hydrophobic polymers. A flux of 18.08 µg/cm2h and 13.37µg/cm2h was achieved for optimized formulations containing 1, 8-cineole and oleic acid respectively as permeation enhancers. The observed flux values were higher when compared to passive control (8.66 µg/cm2h). Highest skin permeation was observed when 1,8-cineole was used as chemical permeation enhancer and it considerably (2-2.5 fold) improved the THC transport across the rat skin. In vivo studies were performed in rabbits and samples were analysed by LC-MS-MS. The mean area under the curve (AUC) values of transdermal film showed about 2.35 times statistically significant (p<0.05) improvement in bioavailability when compared with the oral administration of THC solution. The developed transdermal therapeutic systems using chemical permeation enhancers were suitable for drugs like THC in effective management of muscular pain.    


2020 ◽  
Vol 10 ◽  
Author(s):  
Divya Thakur ◽  
Gurpreet Kaur ◽  
Sheetu Wadhwa ◽  
Ashana Puri

Background: Metronidazole (MTZ) is an anti-oxidant and anti-inflammatory agent with beneficial therapeutic properties. The hydrophilic nature of molecule limits its penetration across the skin. Existing commercial formulations have limitations of inadequate drug concentration present at target site, which requires frequent administration and poor patient compliance. Objective: The aim of current study was to develop and evaluate water in oil microemulsion of Metronidazole with higher skin retention for treatment of inflammatory skin disorders. Methods: Pseudo ternary phase diagrams were used in order to select the appropriate ratio of surfactant and co-surfactant and identify the microemulsion area. The selected formulation consisted of Capmul MCM as oil, Tween 20 and Span 20 as surfactant and co-surfactant, respectively, and water. The formulation was characterized and evaluated for stability, Ex vivo permeation studies and in vivo anti-inflammatory effect (carrageenan induced rat paw edema, air pouch model), anti-psoriatic activity (mouse-tail test). Results: The particle size analyses revealed average diameter and polydispersity index of selected formulation to be 16 nm and 0.373, respectively. The results of ex vivo permeation studies showed statistically higher mean cumulative amount of MTZ retained in rat skin from microemulsion i.e. 21.90 ± 1.92 μg/cm2 which was 6.65 times higher as compared to Marketed gel (Metrogyl gel®) with 3.29 ± 0.11 μg/cm2 (p<0.05). The results of in vivo studies suggested the microemulsion based formulation of MTZ to be similar in efficacy to Metrogyl gel®. Conclusion: Research suggests efficacy of the developed MTZ loaded microemulsion in treatment of chronic skin inflammatory disorders.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1658
Author(s):  
Dalia H. Abdelkader ◽  
Ahmed Kh. Abosalha ◽  
Mohamed A. Khattab ◽  
Basmah N. Aldosari ◽  
Alanood S. Almurshedi

Atorvastatin Calcium (At-Ca) has pleiotropic effect as anti-inflammatory drug beside its main antihyperlipidemic action. Our study was conducted to modulate the anti-inflammatory effect of At-Ca to be efficiently sustained for longer time. Single oil-water emulsion solvent evaporation technique was used to fabricate At-Ca into polymeric nanoparticles (NPs). In vitro optimization survey was performed on Poly(lactide-co-glycolide) (PLGA) loaded with At-Ca regrading to particle size, polydispersity index (PDI), zeta potential, percent entrapment efficiency (% EE), surface morphology and in vitro release pattern. In vitro drug-polymers interactions were fully scanned using Fourier-Transform Infrared Spectroscopy (FTIR) and Differential Scanning calorimetry (DSC) proving that the method of fabrication is an optimal strategy maintaining the drug structure with no interaction with polymeric matrix. The optimized formula with particle size (248.2 ± 15.13 nm), PDI (0.126 ± 0.048), zeta potential (−12.41 ± 4.80 mV), % EE (87.63 ± 3.21%), initial burst (39.78 ± 6.74%) and percent cumulative release (83.63 ± 3.71%) was orally administered in Male Sprague–Dawley rats to study the sustained anti-inflammatory effect of At-Ca PLGA NPs after carrageenan induced inflammation. In vivo results demonstrate that AT-Ca NPs has a sustained effect extending for approximately three days. Additionally, the histological examination revealed that the epidermal/dermal layers restore their typical normal cellular alignment with healthy architecture.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 355 ◽  
Author(s):  
Lídia Gómez-Segura ◽  
Alexander Parra ◽  
Ana Cristina Calpena-Campmany ◽  
Álvaro Gimeno ◽  
Immaculada Gómez de Aranda ◽  
...  

(1) Background: Carprofen (CP), 2-(6-chlorocarbazole) propionic acid, is used as an anti-inflammatory, analgesic and anti-pyretic agent and it belongs to the family of non-steroidal anti-inflammatory drugs (NSAIDs). CP has some adverse reactions in systemic administration; for this reason, topical administration with CP nanoparticles (CP-NPs) can be an optimal alternative. The main objective of this work is the investigation of ex vivo permeation of CP through different types of porcine mucous membranes (buccal, sublingual and vaginal) and ophthalmic tissues (cornea, sclera and conjunctiva) to compare the influence of CP-NPs formulation over a CP solution (CP-Solution). (2) Methods: The ex vivo permeation profiles were evaluated using Franz diffusion cells. Furthermore, in vivo studies were performed to verify that the formulations did not affect the cell structure and to establish the amount retained (Qr) in the tissues. (3) Results: Permeation of CP-NPs is more effective in terms of drug retention in almost all tissues (with the exception of sclera and sublingual). In vivo studies show that neither of the two formulations affects tissue structure, so both formulations are safe. (4) Conclusions: It was concluded that CP-NPs may be a useful tool for the topical treatment of local inflammation in veterinary and human medicine.


2020 ◽  
Vol 13 ◽  
Author(s):  
Ankita Dadwal ◽  
Neeraj Mishra ◽  
Raj Kumar Narang

Background: Psoriasis is an autoimmune disease of the skin with lapsing episodes of hyperkeratosis, irritation, and inflammation. Numerous traditional and novel drug delivery systems have been used for better penetration through psoriatic barrier cells and also for retention in the skin. As there is no effective remedy for better penetration and retention is there because of the absence of an ideal carrier for effective and safe delivery of antipsoriatic drugs. Objectives: The main objective of this project is to develop Squalene integrated NLC based carbopol 940 gel to create a local drug depot in skin for improved efficacy against psoriasis. Methods: Homogenization method is used for the formulation of Nanostructured Lipid Carrier and were characterized on the basis of size, entrapment efficiency, polydispersity index (PDI), viscosity, spreadability, DSC, zeta potential, % in vitro release, in vitro skin permeation and retention studies, physical storage stability studies and in vivo studies can use other alternative models for induction of psoriasis by severe redness, swelling macroscopically and microvascular dilation edema lasting for 10 days. Further histopathology study was done to basses of changes in the skin. Conclusion: The optimized formulation of nanostructured lipid carrier-based gel has shown significant sustained release of clobetasol propionate. Further, this formulation has also shown retention in skin because of squalene as it is sebum derived lipid show affinity towards the sebaceous gland.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 66 ◽  
Author(s):  
Joaquim Suñer-Carbó ◽  
Ana Calpena-Campmany ◽  
Lyda Halbaut-Bellowa ◽  
Beatriz Clares-Naveros ◽  
María Rodriguez-Lagunas ◽  
...  

Efficient topical delivery of imidazolic antifungals faces the challenge of overcoming its limited water solubility and its required long-lasting duration of treatments. In this paper, a hydrophilic multiple emulsion (ME) of Bifonazole (BFZ) is shown to maximize its skin retention, minimize its skin permeation, and maintain an acceptable level of being harmless in vivo. The formulations were pharmaceutically characterized and application properties were assessed based on viscosity measurements. Non-Newtonian pseudoplastic shear thinning with apparent thixotropy was observed, facilitating the formulation retention over the skin. The in vitro release profile with vertical diffusion cells showed a predominant square-root release kinetic suggesting an infinite dose depletion from the formulation. Ex vivo human skin permeation and penetration was additionally evaluated. Respective skin permeation was lower than values obtained with a commercial O/W formulation. The combination of amphoteric and non-ionic surfactants increased the bifonazole epidermal accumulation by a factor of twenty. This fact makes the possibility of increasing its current 24 h administration frequency more likely. Eventual alterations of skin integrity caused by the formulations were examined with epidermal histological analysis and in vivo preclinical measurements of skin elasticity and water retrograde permeation. Histological analysis demonstrated that the multiple emulsions were harmless. Additionally, modifications of in vivo skin integrity descriptors were considered as negligible.


Author(s):  
SEHAM M. SHAWKY ◽  
MAHA K. A. KHALIFA ◽  
HEBA A. EASSA

Objective: To design a controlled topical delivery system of lornoxicam (LX) in order to enhance skin permeation and treatment efficacy. Nanosponges were selected as a novel carrier for this purpose. Methods: Nanosponges were formulated via the emulsion solvent evaporation method using ethyl cellulose (polymer) and polyvinyl alcohol (surfactant). Nanosponge dispersions were characterized for colloidal properties, entrapment efficiency and in vitro release study. The nanosponge formulation (LS1) was then incorporated into carboxymethyl cellulose sodium hydrogels and evaluated for pH, viscosity and in vitro drug release. Skin irritation was evaluated, and anti-inflammatory activity was assessed via rat hind paw edema method. Results: Nanosponges were in the nano-sized range and attained a uniform round shape with a spongy structure. LS1exhibited the highest LX release after 6 h, so it was incorporated as hydrogel. Formulated hydrogels showed acceptable physicochemical parameters (pH, drug content and rheological properties). Skin irritation testing proved LX-loaded nanosponge hydrogel formulation (G1) to be non-irritant. In vivo study revealed an enhanced anti-inflammatory activity of G1 for 6 h (p<0.001). Conclusion: The developed nanosponge hydrogel is an efficient nanocarrier for improved and controlled topical delivery of LX.


Author(s):  
Faisal Obaid Alotaibi ◽  
Gulam Mustafa ◽  
Alka Ahuja

Objective: Formulate a nanocarrier for enhancing the anti-inflammatory activity of thymoquinone (Tq), a major active constituent of Nigella sativa.Methods: Nanoformulation of Tq was developed by low energy emulsification techniques. NanoTqs were pre-screened by different thermodynamic stability tests, followed by in vitro release, zeta potential, viscosity, the transmittance (%), globule size distribution and ex vivo studies. The morphology of the optimized NanoTq was determined by transmission electron microscopy (TEM) which revealed fairly spherical shape and good correlation with particle size distribution study. The formulation used for assessment of the anti-inflammatory potential and permeability enhancement contained mixture of essential oil of Nigella sativa: Capryol 90 (3:7, 10%, v/v), Tween 80 (21.75%, v/v), PEG 400 (7.25%, v/v) and double distilled water (61%, v/v).Results: The in vitro permeation of Tq from optimized formulations was found extremely significant (p<0.001) in comparison to apiTq. The steady state flux (Jss), the permeability coefficient (Kp) and enhancement ratio (Er) of NanoTq gel was determined and compared with apiTq. The comparative anti-inflammatory effects of the optimized formulations NanoTq, apiTq and DicloGel was assessed on the edema in the carrageenan-induced paw model in Wistar rats. Therapeutic potential of NanoTq was found statistically extremely significant (P<0.0001) compared to apiTq and insignificant comparable with standard DicloGel. Storage stability of NanoTq showed insignificant changes in the zeta potential, droplet size and was free from any physical instability.Conclusion: The optimized nano formulation with a lower dose of Tq showed better anti-inflammatory effects, indicating greater absorption capability through the stratum corneum.


Sign in / Sign up

Export Citation Format

Share Document