scholarly journals Stem Cell – A Miraculous Cell Creating a Ray of Future Hope

1970 ◽  
Vol 9 (1) ◽  
pp. 1-4
Author(s):  
Sanjoy Kumar Chakraborty ◽  
Laila Anjuman Banu

Ultimately, every cell in the human body can be traced back to a fertilized egg that came into existence from the union of ovum and sperm. But the body is made up of over 200 different types of cells, not just one. All of these cell types come from a pool of cells in the early embryo, called stem cells. DOI: http://dx.doi.org/10.3329/bja.v9i1.8138 Bangladesh Journal of Anatomy January 2011, Vol. 9 No. 1 pp 1-4

2020 ◽  
pp. 1-2
Author(s):  
Shantha A R

Stem cells are the building blocks of life. They have remarkable potential to regenerate and develop into many different cell types in the body during early life and growth. They are also a class of undifferentiated cells that are able to be differentiated into specialized cells types. Stem cells are characterized by certain features such as totipotency, pluripotency, multipotency, oligopotent and unipotency. The history of stem cell research had an embryonic beginning in the mid 1800s with the discovery that few cells could generate other cells. In the 1900s the first stem cells were discovered when it was found that cells generate blood cells. Nowadays, stem cell therapy is under research and till now, a very few stem cell therapies have been regarded as safe and successful. It is also found that stem cell therapy cast a number of side effects too. The cost of the procedure too is expensive and is not easily affordable.


2017 ◽  
Vol 373 (1739) ◽  
pp. 20160494 ◽  
Author(s):  
Rumiko Kofuji ◽  
Yasushi Yagita ◽  
Takashi Murata ◽  
Mitsuyasu Hasebe

Stem cells self-renew and produce precursor cells that differentiate to become specialized cell types. Land plants generate several types of stem cells that give rise to most organs of the plant body and whose characters determine the body organization. The moss Physcomitrella patens forms eight types of stem cells throughout its life cycle. Under gametangium-inducing conditions, multiple antheridium apical stem cells are formed at the tip of the gametophore and each antheridium apical stem cell divides to form an antheridium. We found that the gametophore apical stem cell, which typically forms leaf and stem tissues, changes to become a new type of stem cell, which we term the antheridium initial stem cell. This antheridium initial stem cell produces multiple antheridium apical stem cells, resulting in a cluster of antheridia at the tip of gametophore. This is the first report of a land plant stem cell directly producing another type of stem cell during normal development. Notably, the antheridium apical stem cells are distally produced from the antheridium initial stem cell, similar to the root cap stem cells of vascular plants, suggesting the use of similar molecular mechanisms and a possible evolutionary relationship. This article is part of a discussion meeting issue ‘The Rhynie cherts: our earliest terrestrial ecosystem revisited’.


2021 ◽  
Vol 128 (6) ◽  
pp. 775-801
Author(s):  
Giulia Campostrini ◽  
Laura M. Windt ◽  
Berend J. van Meer ◽  
Milena Bellin ◽  
Christine L. Mummery

The ability of human pluripotent stem cells to form all cells of the body has provided many opportunities to study disease and produce cells that can be used for therapy in regenerative medicine. Even though beating cardiomyocytes were among the first cell types to be differentiated from human pluripotent stem cell, cardiac applications have advanced more slowly than those, for example, for the brain, eye, and pancreas. This is, in part, because simple 2-dimensional human pluripotent stem cell cardiomyocyte cultures appear to need crucial functional cues normally present in the 3-dimensional heart structure. Recent tissue engineering approaches combined with new insights into the dialogue between noncardiomyocytes and cardiomyocytes have addressed and provided solutions to issues such as cardiomyocyte immaturity and inability to recapitulate adult heart values for features like contraction force, electrophysiology, or metabolism. Three-dimensional bioengineered heart tissues are thus poised to contribute significantly to disease modeling, drug discovery, and safety pharmacology, as well as provide new modalities for heart repair. Here, we review the current status of 3-dimensional engineered heart tissues.


2021 ◽  
pp. 1-18
Author(s):  
Jonathan Slack

‘What are stem cells?’ explains that a stem cell is a cell that can both reproduce itself and generate offspring of different functional cell types and begins by considering the nature of cells in general, wherein cells are understood to be the ultimate structural unit of an animal or plant body. Stem cells in the body persist long term, usually for the lifetime of the organism. Good examples of differentiated cells arising from stem cells are those of the skin, the blood, and the lining of the intestine. Embryonic stem cells are grown in culture from early mammalian embryos. The reason that stem cell research is seen as the source for new cures is largely because this technology offers a route to cell therapy.


Author(s):  
Hisham F. Bahmada ◽  
Mohamad K. Elajami ◽  
Reem Daouk ◽  
Hiba Jalloul ◽  
Batoul Darwish ◽  
...  

: Stem cells are undifferentiated cells with the ability to proliferate and convert to different types of differentiated cells that make up the various tissues and organs in the body. They exist both in embryos as pluripotent stem cells that can differentiate into the three germ layers and as multipotent or unipotent stem cells in adult tissues to aid in repair and homeostasis. Perturbations in these cells’ normal functions can give rise to a wide variety of diseases. In this review, we discuss the origin of different stem cell types, their properties and characteristics, their role in tissue homeostasis, current research, and their potential applications in various life-threatening diseases. We focus on neural stem cells, their role in neurogenesis and how they can be exploited to treat diseases of the brain including neurodegenerative diseases and cancer. Next, we explore current research in induced pluripotent stem cell (iPSC) techniques and their clinical applications in regenerative and personalized medicine. Lastly, we tackle a special type of stem cells called cancer stem cells (CSCs) and how they can be responsible for therapy resistance and tumor recurrence and explore ways to target them.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Erin A. Kimbrel ◽  
Shi-Jiang Lu

The ability of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) to divide indefinitely without losing pluripotency and to theoretically differentiate into any cell type in the body makes them highly attractive cell sources for large scale regenerative medicine purposes. The current use of adult stem cell-derived products in hematologic intervention sets an important precedent and provides a guide for developing hESC/iPSC based therapies for the blood system. In this review, we highlight biological functions of mature cells of the blood, clinical conditions requiring the transfusion or stimulation of these cells, and the potential for hESC/iPSC-derivatives to serve as functional replacements. Many researchers have already been able to differentiate hESCs and/or iPSCs into specific mature blood cell types. For example, hESC-derived red blood cells and platelets are functional in tasks such as oxygen delivery and blood clotting, respectively and may be able to serve as substitutes for their donor-derived counterparts in emergencies. hESC-derived dendritic cells are functional in antigen-presentation and may be used as off-the-shelf vaccine therapies to stimulate antigen-specific immune responses against cancer cells. However,in vitrodifferentiation systems used to generate these cells will need further optimization before hESC/iPSC-derived blood components can be used clinically.


2017 ◽  
Vol 1 (1) ◽  
pp. 17
Author(s):  
Siska Damayanti ◽  
Rina Triana ◽  
Angliana Chouw ◽  
Nurrani Mustika Dewi

Introduction: Each cell in human body is assigned with a specialized function to perform.  Before a cell becomes specialized, it is a stem cell. Stem cell research and therapy is progressing dramatically these days. Stem cell therapy holds enormous treatment potential for many diseases which currently have no or limited therapeutic options. Unfortunately, this potential also comes with side-effects. In this review, the positive and negative effects of regulation of stem cells will be explained.Content: Stem cells are undifferentiated cells that have potential to develop into many different cell types in the body during early life and growth. The type of stem cells are embryonic stem cells, induced pluripotent stem cells, somatic stem cells, foetal stem cells and mesenchymal stem cells. Stem cell transplantation is one form of stem cell therapy, it comes with different sources, and those are autologous and allogenic transplantation stem cells. In an autologous transplant, a patient’s own blood-forming stem cells are collected, meanwhile in an allogeneic transplant, a person’s stem cells are replaced with new stem cells obtained from a donor or from donated umbilical cord blood.Summary: Its abilities to maintain undifferentiated phenotype, self-renewing and differentiate itself into specialized cells, give rise to stem cell as a new innovation for the treatment of various diseases. In the clinical setting, stem cells are being explored in various conditions, such as in tissue repair and regeneration and autoimmune diseases therapy. But along with its benefit, stem cell therapy also holds some harm. It is known that the treatment using stem cell for curing and rehabilitation has the risk in tumor formation.


2006 ◽  
Vol 3 (2) ◽  
Author(s):  
Hans-Georg Dederer

AbstractHuman embryonic stem cells (hES-cells) have two distinctive properties: they are able to replicate in an artificial medium more or less indefinitely, and they are capable of differentiating into each of the cell types which make up the human body. They do not have, however, the ability to develop into a complete and functioning human organism. hEScells are, therefore, not considered human embryos.


2019 ◽  
Vol 6 (4) ◽  
pp. 198-202
Author(s):  
Ara L. Unanyan ◽  
E. A Kogan ◽  
M. V Berishvili ◽  
M. N Zholobova ◽  
L. G Pivazyan ◽  
...  

Stem cells are cells capable of self-sustaining asymmetric division, resulting in one daughter cell and one progenitor cell from one stem cell. The features of stem cells are the ability to self-renew and differentiate into various cells, ensure hemostasis of tissues, as well as proliferative reserve. The maintenance and functional properties of stem cells are regulated by signals from the stem cell niche, i.e. from their local microenvironment, which contributes to adequate self-renewal and differentiation. Therefore, niches provide regulation of the number of stem cells in the body and protect the body from their excessive proliferation. Structurally, the stem niche is a combination of all factors that ensure the viability and self-reproduction of stem cells and the differentiation of daughter progenitor cells. An example of a stem cell niche can be the transition zone (TZs) - the junction of different types of epithelial tissue. It is believed that carcinogenesis can be associated with these zones: the transition region of the glandular and squamous epithelium in the conjunctiva, the cervical glands of the stomach, in the esophagus, in the lungs (bronchioalveolar transition zone), in the cervix (endo-ectocervical transition). This article discusses modern approaches to the search for significant markers of the state of stem cell niche and tumor stem cells of cervical cancer, which will be of great importance in clinical practice for the timely detection of oncological processes, even before their phenotypic manifestation.


Author(s):  
Rony H. Salloum ◽  
J. Peter Rubin ◽  
Kacey G. Marra

AbstractMesenchymal stem cells (MSCs) are multipotent stem cells capable of either self-regeneration or differentiation into more mature cell types, depending on the environmental stimuli. MSCs originate from the mesoderm and differentiate readily into mesodermal tissue. The tissues most studied in that respect are bone, fat and cartilage, and the key molecular elements in these three differentiation pathways are RUNX2, PPARγ and SOX9, respectively. Steroidal molecules play an important role in determining the fate of MSCs, mainly by altering the expression of key cellular molecules. Not all steroids exert the same effects on these cells. This review discusses the effects of sex steroids and glucocorticoids on the proliferative capacity and differentiation patterns of MSCs. With stem-cell-based therapy gaining worldwide attention, we explore the role of steroids in modulating MSCs for clinical and therapeutic purposes. The ease with which some MSCs, such as adipose-derived stem cells, can be harvested from the body and manipulated in the laboratory may lead to increased interest in this era of stem cells.


Sign in / Sign up

Export Citation Format

Share Document