scholarly journals Chemical composition and biological activities of essential oils of endemic Thymus leucostomus Hausskn. et Velen

2020 ◽  
Vol 49 (4) ◽  
pp. 957-965
Author(s):  
Omer Elkiran ◽  
Cumhur Avsar

The chemical composition, antimicrobial and antioxidant properties of the essential oils from the leaves of endemic Thymus leucostomus naturally grown in Turkey were investigated and chemical differences were discussed by means of chemotaxonomy. Twenty-six components were identified representing 98.8% of the oils. The main compounds in the essential oil of T. leucostomus were: o-cymene (30.6%), carvacrol (9.6%), thymol methyl ether (7.2%), limonene (6.8%). Essential oil was screened for their antimicrobial activities against 7 bacteria and 2 yeast species by using disc-diffusion and MIC procedure. The essential oil showed higher effectiveness against all the tested bacteria and yeast. The extract was observed to be much more effective in Gram-positive bacteria (especially, S. aureus ATCC 6538). In vitro antioxidant activity based on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical was evaluated for the essential oil, and it was found that the essential oil had good antioxidant activity in the range of the IC50= 5.42 ±0.8 μg/ml.

2020 ◽  
Vol 49 (1) ◽  
pp. 91-96
Author(s):  
Omer Elkiran ◽  
Cumhur Avşar

The chemical composition, antimicrobial and antioxidant properties of the essential oil (EO), obtained from the leaves of Vaccinium myrtillus naturally grown in the northernmost of Turkey were determined by GC and GC-MS and chemical differences were discussed with the help of chemotaxonomy. The leaves of the plant samples were hydro-distilled to produce oil in the yields of 1%. Nineteen components were identified representing 96.4% of the oil. The main compounds in the EO of V. myrtillus were; 1,8-cineole (38.6%), α- pinene (21%), linalool (19.5%), α-terpineol (5.8%). The EO extract was screened for their antimicrobial activities against the 9 bacteria and 3 yeast species by using disc-diffusion and MIC procedure. The EO extract displayed more effective against all the tested bacteria (especially, S. aureus ATCC 6538 and MRSA) and yeast (only C. krusei). The MIC values of sample against tested microorganisms were found to be in the range of 320 to ≥1280 μg/ml. The most effective MIC values were observed against the S. aureus and MRSA (320 μg/ml). In vitro the antioxidant activity based on the 1,1-diphenly-2-picrylhydrazyl (DPPH) free radical was evaluated for the EO extract, and it was found that the extract had good antioxidant activity in the range of the IC50 = 583.4 ±11 μg ml. Antibacterial and antioxidant activities of the EO from the leaves of V. myrtillus has been reported for the first time.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1081
Author(s):  
Matilda Rădulescu ◽  
Călin Jianu ◽  
Alexandra Teodora Lukinich-Gruia ◽  
Marius Mioc ◽  
Alexandra Mioc ◽  
...  

The investigation aimed to study the in vitro and in silico antioxidant properties of Melissa officinalis subsp. officinalis essential oil (MOEO). The chemical composition of MOEO was determined using GC–MS analysis. Among 36 compounds identified in MOEO, the main were beta-cubebene (27.66%), beta-caryophyllene (27.41%), alpha-cadinene (4.72%), caryophyllene oxide (4.09%), and alpha-cadinol (4.07%), respectively. In vitro antioxidant properties of MOEO have been studied in 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging, and inhibition of β-carotene bleaching assays. The half-maximal inhibitory concentration (IC50) for the radical scavenging abilities of ABTS and DPPH were 1.225 ± 0.011 μg/mL and 14.015 ± 0.027 μg/mL, respectively, demonstrating good antioxidant activity. Moreover, MOEO exhibited a strong inhibitory effect (94.031 ± 0.082%) in the β-carotene bleaching assay by neutralizing hydroperoxides, responsible for the oxidation of highly unsaturated β-carotene. Furthermore, molecular docking showed that the MOEO components could exert an in vitro antioxidant activity through xanthine oxidoreductase inhibition. The most active structures are minor MOEO components (approximately 6%), among which the highest affinity for the target protein belongs to carvacrol.


2021 ◽  
Vol 319 ◽  
pp. 01052
Author(s):  
Brahim Outemsaa ◽  
Asmaa Oubihi ◽  
Hassna Jaber ◽  
Sara Haida ◽  
Ikram Kenfaoui ◽  
...  

In recent years, a concern has been expressed about the impact of antibiotics and synthetic antioxidants, which are used to inhibit microbial growth and retard fat oxidation in foods. In addition, antibiotic resistance presents a serious menace to human and environmental ecosystems. This has led the food industry to use natural resources such as essential oils in the preparation of foods, this forming their sensory profile and increasing preservation time there. The objective of this work is to determine the chemical composition and evaluate the antibacterial and antioxidant activity of the essential oil of Illicium verum. The yield of essential oil extracted by hydro distillation is about 4.13%. The chemical composition of the essential oil extracted from the dried fruits of Illicium verum was studied by gas chromatography coupled with mass spectrometry (GC and GC/MS). Twenty-eight constituents, representing 99.74% of the essential oil were identified. The major compounds are: trans-anethole (83.46%), D-Limonene (4.56%), Estragole (3.47%) and Linalool (1.07%). Antioxidant activity was determined by the DPPH assay. The essential oils of Illicium verum showed low antioxidant activity with IC50= 286.19 ± 7.4 mg/mL, compared to Ascorbic acid IC50= 0.09 ± 0.01 mg/mL. The antibacterial effect of this essential oil was tested against six microorganisms, of which Staphylococcus aureus is the most sensitive with an MIC of about 1/1000 (v/v), followed by Staphylococcus epidermidis and Enterobacter cloacae with an MIC equal to 1/100 (v/v).


2011 ◽  
Vol 6 (2) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Marco Bonesi ◽  
Philippe N. Okusa ◽  
Rosa Tundis ◽  
Monica R. Loizzo ◽  
Federica Menichini ◽  
...  

This study aimed to investigate for the first time the chemical composition, the antioxidant properties and the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity of the essential oil from the leaves of Cordia gilletii De Wild (Boraginaceae). The essential oil, characterized by 23 constituents (90.1% of the total oil), was constituted by terpene derivatives (25.6%) and non-terpene derivatives (64.5%), among which aldehydes, fatty acids and alkanes were present with the percentage of 16.5%, 18.8% and 23.1%, respectively. The antioxidant activity of C. gilletii essential oil was screened by two in vitro tests: DPPH and β-carotene bleaching test. The essential oil revealed antioxidant activity with an IC50 value of 75.0 and 129.9 μg/mL on DPPH radical and β-carotene decoloration tests, respectively. Moreover, C. gilletii inhibited AChE enzyme with an IC50 value of 105.6 μg/mL.


2015 ◽  
Vol 10 (6) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Prabodh Satyal ◽  
Bhuwan K. Chhetri ◽  
Noura S. Dosoky ◽  
Ambika Poudel ◽  
William N. Setzer

The essential oil from the dried rhizome of Nardostachys grandiflora, collected from Jaljale, Nepal, was obtained in 1.4% yield, and a total of 72 compounds were identified constituting 93.8% of the essential oil. The rhizome essential oil of N. grandiflora was mostly composed of calarene (9.4%), valerena-4,7(11)-diene (7.1%), nardol A (6.0%), 1(10)-aristolen-9-ol (11.6%), jatamansone (7.9%), valeranal (5.6%), and cis-valerinic acid (5.7%). The chemical composition of N. grandiflora rhizome oil from Nepal is qualitatively very different than those from Indian, Chinese, and Pakistani Nardostachys essential oils. In this study we have evaluated the chemical composition and biological activities of N. grandiflora from Nepal. Additionally, 1(10)-aristolen-9-ol was isolated and the structure determined by NMR, and represents the first report of this compound from N. grandiflora. N. grandiflora rhizome oil showed in-vitro antimicrobial activity against Bacillus cereus, Escherichia coli, and Candida albicans (MIC = 156 μg/mL), as well as in-vitro cytotoxic activity on MCF-7 cells.


2013 ◽  
Vol 8 (3) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Ismail Amri ◽  
Laura De Martino ◽  
Aurelio Marandino ◽  
Hamrouni Lamia ◽  
Hanana Mohsen ◽  
...  

Aromatic plants can interfere in the Mediterranean ecosystem, mainly by the introduction in the environment of volatile compounds. For this reason, we studied the chemical composition and the possible phytotoxic and antimicrobial activities of the essential oil extracted from leaves of Tunisian Artemisia herba-alba Asso. The chemical composition of the essential oil, obtained by hydrodistillation, was analyzed by GC and GC-MS. In all, 24 compounds were identified. The main components were camphor (39.1.%), chrysanthenone (15.0%) and cis-thujone (7.8%). The essential oil was evaluated for its in vitro phytotoxic activity against germination and initial radical growth of Raphanus sativus L., Lepidium sativum L., Sinapis arvensis L., Triticum durum L. and Phalaris canariensis L. seeds. The radicle elongation of the five seeds was affected to different extents by the oil, while germination was not affected. The oil, when tested against eight selected bacterial strains, showed low antimicrobial activity. The chemical composition of the oil of A. herba-alba can help in the chemosystematics of this complex genus. However, the recorded biological activities seem to be neither ecologically nor medicinally significant.


Author(s):  
AJITH S ◽  
KRISHNA V ◽  
RAVI KUMAR S ◽  
VINAY KUMAR NM

Objective: The present study was designed to evaluate the chemical composition of the essential oil of Buchanania lanzan Spreng extracted from the seeds and to evaluate in vitro antimicrobial antioxidants and molecular docking studies of the major bioactive compounds of essential oil. Methods: The essential oil was obtained by hydrodistillation of the B. lanzan seeds and analyzed by gas chromatography-mass spectrometry (GC-MS). Antibacterial activity was evaluated against Pseudomonas aeruginosa, Salmonella typhi, Vibrio cholerae, Staphylococcus aureus, and Streptococcus pneumoniae clinical isolates by disk diffusion method and resazurin assay determined the minimum inhibitory concentration. The in vitro antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) scavenging assay; the essential oil major bioactive compounds are Androstan-3-ol, Campesterol, and γ-Sitosterol were docked against bacterial protein DNA gyrase. Results: GC-MS analysis exhibited the presence of 19 bioactive compounds. The essential oil showed that significant antibacterial activity was noticed against V. cholerae and S. typhi with the highest zone of inhibition 15.67–1.20 and 13.83–0.33, respectively. Antioxidant activity in DPPH and H2O2 scavenging assays with IC50 values of 134.23 and 191.24, respectively. The molecular docking of Androstan-3-ol and γ-Sitosterol with bacterial DNA gyrase unveiled a good binding affinity of −6.4 kcal/mol and −6.3 kcal/ mol, respectively. Conclusion: It could be concluded that the essential oils potential sources of antibacterial, antioxidant activities, and molecular docking of bioactive components. The results of this study provide partial scientific support for the traditional application of essential oils to cure diarrhea and also major bioactive compounds responsible for important biological activities.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2575 ◽  
Author(s):  
Medbouhi ◽  
Benbelaïd ◽  
Djabou ◽  
Beaufay ◽  
Bendahou ◽  
...  

The chemical composition of essential oils extracted from aerial parts of Eryngium campestre collected in 37 localities from Western Algeria was characterized using GC-FID and GC/MS analyses. Altogether, 52 components, which accounted for 70.1 to 86.8% of the total composition oils were identified. The main compounds were Germacrene D (0.4–53.4%), Campestrolide (1.6–35.3%), Germacrene B (0.2–21.5%), Myrcene (0.1–8.4%), α-Cadinol (0.2–7.6%), Spathulenol (0.1–7.6%), Eudesma-4(15)-7-dien-1-β-ol (0.1–7.6%) and τ-Cadinol (0.3–5.5%). The chemical compositions of essential oils obtained from separate organs and during the complete vegetative cycle of the plant were also studied. With the uncommon 17-membered ring lactone named Campestrolide as the main component, Algerian E. campestre essential oils exhibited a remarkable chemical composition. A study of the chemical variability using statistical analysis allowed the discrimination of two main clusters according to the geographical position of samples. The study contributes to the better understanding of the relationship between the plant and its environment. Moreover, the antimicrobial activity of the essential oil was assessed against twelve strains bacteria and two yeasts involved in foodborne and nosocomial infections using paper disc diffusion and dilution agar assays. The in vitro study demonstrated a strong activity against Gram-positive strains such as S. aureus, B. cereus, and E. faecalis. The cytotoxicity and antiparasitic activities (on Lmm and Tbb) of the collective essential oil and one sample rich in campestrolide, as well as some enriched fractions or fractions containing other terpenic compounds, were also analyzed. Campestrolide seems to be one compound responsible for the cytotoxic and antileishmanial effect, while myrcene or/and trans-β-farnesene have a more selective antitrypanosomal activity.


Sign in / Sign up

Export Citation Format

Share Document