scholarly journals Effects of perlite, grass charcoal and vermiculite on root growth of isatis (Isatis tinctoria L. Woad) and soil nutrient migration

2021 ◽  
pp. 947-954
Author(s):  
Yan Xu ◽  
Zhen Guo ◽  
Juan Li ◽  
Haiou Zhang ◽  
Yangjie Lu ◽  
...  

Effects of perlite, vermiculite, and grass charcoal on root growth of Isatis and soil nutrients migration were studied, and the plant growth indicators and some soil properties of upper (0~5cm) and lower layer (5~15cm) were analyzed. The experiment treatments were loess (CK), loess : perlite = 3 : 1(A), loess : grass charcoal = 3 : 1(B), loess : vermiculite = 3 : 1(C), loess: perlite: grass charcoal = 6 : 1 : 1(A1), loess: perlite: vermiculite = 6 : 1 : 1(B1), loess: grass charcoal: vermiculite = 6 : 1 : 1(C1). The results showed that soil pH of vermiculite-containing treatments in the upper layer and grass charcoal treatment in the lower layer decreased significantly. Before planting, the available potassium and phosphorus of the upper layer were significantly higher than those of the lower layer, and soil organic matter (SOM) was slightly higher than that of the lower layer. After planting, the decrease of available potassium in the upper layer was less than that of the lower layer, and the decrease of available phosphorus and increase of SOM in the upper layer were slightly higher than that of the lower layer. In sum, it is preferred to choose B (loess : grass charcoal = 3 : 1) and A1 (loess: perlite: grass charcoal = 6 : 1 : 1) to improve the soil nutrient and utilization efficiency. Bangladesh J. Bot. 50(3): 947-954, 2021 (September) Special

2021 ◽  
pp. 969-976
Author(s):  
Lirong He ◽  
Yuhu Luo

The soil nutrient characteristics under three vegetation types of arbor ( I ), shrub ( II ) and herb ( III ) were studied by mathematical statistics method combined with field investigation and indoor detection analysis. The change characteristics of soil nutrients under different land use patterns were discussed. The results showed that the average contents of soil organic matter, total nitrogen, available phosphorus and available potassium were 21.30 and 0.65 g/kg, 3.67 and 67.61 mg/kg, respectively. Compared with grassland, woodland has better effect on fertilizer conservation in the Loess Plateau. In the process of soil nutrient improvement, the nutrient indexes such as organic matter, total nitrogen, available phosphorus and available potassium increased synchronously, and the soil alkaline environment that was not conducive to plant growth was also gradually improved. In the correlation between soil nutrients, available phosphorus and available potassium have good relative independence. In the future, organic fertilizer should be applied in this area, and nitrogen and phosphorus fertilizers should be supplemented to improve soil organic matter, nitrogen and phosphorus content, and to ensure soil nutrient balance by optimizing fertilization methods. In addition, in the case of uneven distribution of soil nutrients in the soil profile, it is recommended to take appropriate soil ploughing and reasonable human management measures to improve soil nutrient status, achieve high-quality sustainable development of soil, and promote the positive succession of vegetation communities. Bangladesh J. Bot. 50(3): 969-976, 2021 (September) Special


2021 ◽  
Vol 13 (7) ◽  
pp. 3957
Author(s):  
Yingying Xing ◽  
Ning Wang ◽  
Xiaoli Niu ◽  
Wenting Jiang ◽  
Xiukang Wang

Soil nutrients are essential nutrients provided by soil for plant growth. Most researchers focus on the coupling effect of nutrients with potato yield and quality. There are few studies on the evaluation of soil nutrients in potato fields. The purpose of this study is to investigate the soil nutrients of potato farmland and the soil vertical nutrient distributions, and then to provide a theoretical and experimental basis for the fertilizer management practices for potatoes in Loess Plateau. Eight physical and chemical soil indexes were selected in the study area, and 810 farmland soil samples from the potato agriculture product areas were analyzed in Northern Shaanxi. The paper established the minimum data set (MDS) for the quality diagnosis of the cultivated layer for farmland by principal component analysis (PCA), respectively, and furthermore, analyzed the soil nutrient characteristics of the cultivated layer adopted soil quality index (SQI). The results showed that the MDS on soil quality diagnosis of the cultivated layer for farmland soil included such indicators as the soil organic matter content, soil available potassium content, and soil available phosphorus content. The comprehensive index value of the soil quality was between 0.064 and 0.302. The SPSS average clustering process used to classify SQI was divided into three grades: class I (36.2%) was defined as suitable soil fertility (SQI < 0.122), class II (55.6%) was defined as moderate soil fertility (0.122 < SQI < 0.18), and class III (8.2%) was defined as poor soil fertility (SQI > 0.186). The comprehensive quality of the potato farmland soils was generally low. The proportion of soil nutrients in the SQI composition ranged from large to small as the soil available potassium content = soil available phosphorus content > soil organic matter content, which became the limiting factor of the soil organic matter content in this area. This study revolves around the 0 to 60 cm soil layer; the soil fertility decreased gradually with the soil depth, and had significant differences between the respective soil layers. In order to improve the soil nutrient accumulation and potato yield in potato farmland in northern Shaanxi, it is suggested to increase the fertilization depth (20 to 40 cm) and further study the ratio of nitrogen, phosphorus, and potassium fertilizer.


2019 ◽  
Vol 4 (1) ◽  
pp. 187-202
Author(s):  
Walter A. Goldstein ◽  
Herbert H. Koepf ◽  
Chris J. Koopmans

AbstractThe effects of biodynamic preparations were tested in the context of comparisons of conventional, organic, and biodynamic systems and diverse crop rotations in Washington and Wisconsin, USA. Wisconsin research also entailed testing a new nettle-and-manure-based field spray preparation (NCP). Focus was on winter wheat and maize and on soil quality. In Washington, preparations increased root growth of winter wheat, microbial biomass, and soil organic matter. In Wisconsin, applying a combination of preparations that included NCP increased root growth of maize, root health, and particulate organic matter in the soil. Relative to the organic treatments, root dry matter increases associated with the use of preparations varied from 12% to 39% and root length differences varied from 10% to 37% depending on the experiment, crop, year, and preparation application. The biodynamic + NCP treatment also induced substantial, positive yield compensatory effects for maize and wheat under stress condition years. The response slopes were practically identical for wheat and maize, indicating that the effect is of the same magnitude for both crops. Results were higher average grain yields and gross financial returns than for organic grain. The greater root production and root health stimulated by preparations is probably linked to greater vegetative growth, enhanced yield under stress conditions, and increased soil quality and carbon in soils.


Author(s):  
Zhiyang Lie ◽  
Zhuomin Wang ◽  
Li Xue

With one-year-old Tephrosia candida trees as experimental material, influence of stand density on soil nutrient content and enzyme activity was studied. The results showed that density had little influenced on pH value in 2, 4 and 8 trees m2 stands. The contents of soil organic matter, effective nitrogen and effective phosphorus significantly increased in 2 trees m2 stands. The contents of soil organic matter and effective nitrogen significantly increased, whereas total N, total P, total K, effective N, effective P and effective K significantly decreased in 4 trees/m2 stand. Soil organic matter and nutrients except for total P significantly decreased in 8 trees m2 stand. Among the three density stands, the activities of urease, catalase and phosphatase were the lowest in 8 trees m2 stand.


1993 ◽  
Vol 15 (2) ◽  
pp. 103-106 ◽  
Author(s):  
M. Quintero-Ramos ◽  
D. Espinoza-Victoria ◽  
R. Ferrera-Cerrato ◽  
G. J. Bethlenfalvay

CATENA ◽  
2022 ◽  
Vol 208 ◽  
pp. 105721
Author(s):  
Lina Che ◽  
Muyang Cheng ◽  
Libo Xing ◽  
Yifan Cui ◽  
Luhe Wan

2014 ◽  
Vol 05 (08) ◽  
pp. 743-753 ◽  
Author(s):  
María Daniela Chavez ◽  
Paulus Bernardus Maria Berentsen ◽  
Oene Oenema ◽  
Alfons Gerard Joseph Maria Oude Lansink

2019 ◽  
Vol 11 (19) ◽  
pp. 5410 ◽  
Author(s):  
Jie Lei ◽  
Hailun Du ◽  
Aiguo Duan ◽  
Jianguo Zhang

In order to study the characteristics of soil nutrient elements and the changes in biomass under different densities and soil layers of forest stand, this paper considers Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) density test forests with five densities (A: 1667 trees·ha−1; B: 3333 trees·ha−1; C: 5000 trees·ha−1; D: 6667 trees·ha−1; E: 10,000 trees·ha−1) as the research objects, located in Naxi District, Sichuan Province, China. Eleven soil physical and chemical property indicators, understory vegetation, and litter biomass were measured. The results were as follows: (1) The stand density had a significant effect on the soil nutrient content, understory vegetation, and litter biomass. A low density is conducive to the accumulation of soil organic matter, hydrolytic N, available P, available K, and total Ca. (2) With the increase in soil depth, the contents of soil organic matter, total N, hydrolytic N, and total P decreased gradually; pH and total Ca decreased gradually; and available P showed a trend of decrease-up-decrease. The soil layers had no significant effect on the total K, total Fe, and total Mg concentrations. (3) Low density (density A or B) was found to be beneficial to the growth of undergrowth vegetation and forest trees, the return of nutrients, long-term soil maintenance, and the stable high yield of Chinese fir plantations.


2014 ◽  
Vol 3 (4) ◽  
pp. 63
Author(s):  
Luciano Pasqualoto Canellas ◽  
Riccardo Spaccini ◽  
Natalia De Oliveira Aguiar ◽  
Fabio Lopes Olivares

<p>In this work we have analyzed soil samples from Oxisols collected from two traditional communities, one formed by Guarany Indians at South of Brazil and other by African descendants on North of Rio de Janeiro State, Brazil. The content and fractional composition of humus was investigated and the isolated humic acids (HAs) were characterized by elemental composition, <sup>13</sup>C solid-state nuclear magnetic resonance, and high-performance size exclusion chromatography. The bioactivity of HAs was evaluated considering the effects on root growth of maize seedlings. Chemical properties from adjacent soils under native forest were used as control samples. The local field sites matching the traditional cropping requirements, were characterized by higher soil chemical fertility and soil organic matter hydrophobicity, as compared to the land plots considered as inadequate by rural peasants. The HAs from cropped soils revealed significant differences in respect to content, hydrophobicity, biostimulation and molecular dimension. Although all humic extracts promoted, both, root growth and the stimulation of lateral root emergence over control, the HAs from preferential local sites, revealed a larger bioactivity response on root stimulation even at lower concentration. The assessment of soil quality issued by local farmers, showed a valuable fitting with bio-chemical fertility indicators and SOM hydrophobicity.<strong></strong></p>


2018 ◽  
Vol 15 (16) ◽  
pp. 4943-4954 ◽  
Author(s):  
Rafael Vasconcelos Valadares ◽  
Júlio César Lima Neves ◽  
Maurício Dutra Costa ◽  
Philip James Smethurst ◽  
Luiz Alexandre Peternelli ◽  
...  

Abstract. Vigorous Eucalyptus plantations produce 105 to 106 km ha−1 of fine roots that probably increase carbon (C) and nitrogen (N) cycling in rhizosphere soil. However, the quantitative importance of rhizosphere priming is still unknown for most ecosystems, including these plantations. Therefore, the objective of this work was to propose and evaluate a mechanistic model for the prediction of rhizosphere C and N cycling in Eucalyptus plantations. The potential importance of the priming effect was estimated for a typical Eucalyptus plantation in Brazil. The process-based model (ForPRAN – Forest Plantation Rhizosphere Available Nitrogen) predicts the change in rhizosphere C and N cycling resulting from root growth and consists of two modules: (1) fine-root growth and (2) C and N rhizosphere cycling. The model describes a series of soil biological processes: root growth, rhizodeposition, microbial uptake, enzymatic synthesis, depolymerization of soil organic matter, microbial respiration, N mineralization, N immobilization, microbial death, microbial emigration and immigration, and soil organic matter (SOM) formation. Model performance was quantitatively and qualitatively satisfactory when compared to observed data in the literature. Input variables with the most influence on rhizosphere N mineralization were (in order of decreasing importance) root diameter > rhizosphere thickness > soil temperature > clay concentration. The priming effect in a typical Eucalyptus plantation producing 42 m3 ha−1 yr−1 of shoot biomass, with assumed losses of 40 % of total N mineralized, was estimated to be 24.6 % of plantation N demand (shoot + roots + litter). The rhizosphere cycling model should be considered for adaptation to other forestry and agricultural production models where the inclusion of such processes offers the potential for improved model performance.


Sign in / Sign up

Export Citation Format

Share Document