scholarly journals An overview of genotype x environment interaction and yield stability analysis in applied plant breeding: great emphasis given to coffee (Coffea arabica L.)

Author(s):  
Wakuma Merga Sakata

The inconsistence of genotypes across location during plant breeding is the major challenges to the breeder. That is the differential response of genotypes to different environment. Meanwhile stability is the ability of a genotype to withstand stressful conditions and yet be able to produce yield. Thus, stability is an absolute and relative measure. Arabica coffee has location specific adaptation nature and that leads to highly significant instability in its breeding program. In the study of coffee bean yield stability cultivars tested at multi- locations within the domain of coffee growing ecologies of Ethiopia, showed a significant genotype x environment interaction. The review of previous research also indicated inconsistent effects of genotype x environment interaction on cup quality. Yield-stability analysis is very important in measuring cultivar stability and suitability for growing crops across seasons and agro-ecological region to identify stable genotype. The yield stability have been challenge to the plant breeders and biometricians, it complicates the selection of superior genotypes. It is important to minimize the usefulness of the genotype across environments for selecting. Since approach of plant breeding is to develop genotypes that are, optimum for the condition under which they will be grown breeders have to manage yield instability throughout formalized procedures of plant breeding. During stability measurement if the variance is found to be significant, various methods of measuring the stability of genotypes can be used to identify the stable genotype(s). Most of stability analysis parameters are briefly discussed in this review. Int. J. Agril. Res. Innov. Tech. 11(2): 117-123, Dec 2021

2011 ◽  
Vol 39 (1) ◽  
pp. 220 ◽  
Author(s):  
Adesola L. NASSIR ◽  
Omolayo J. ARIYO

Twelve rice varieties were cultivated in inland hydromorphic lowland over a four year-season period in tropical rainforest ecology to study the genotype x environment (GxE) interaction and yield stability and to determine the agronomic and environmental factors responsible for the interaction. Data on yield and agronomic characters and environmental variables were analyzed using the Additive Main Effect and Multiplicative Interaction (AMMI), Genotype and Genotype x Environment Interaction, GGE and the yield stability using the modified rank-sum statistic (YSi). AMMI analysis revealed environmental differences as accounting for 47.6% of the total variation. The genotype and GxE interaction accounted for 28.5% and 24% respectively. The first and second interaction axes captured 57% and 30% of the total variation due to GXE interaction. The analysis identified ‘TOX 3107’ as having a combination of stable and average yield. The GGE captured 85.8%of the total GxE. ‘TOX 3226-53-2-2-2’ and ‘ITA 230’ were high yielding but adjudged unstable by AMMI. These two varieties along with ‘WITA 1’ and ‘TOX 3180-32-2-1-3-5’ were identified with good inland swamp environment, which is essentially moisture based. The two varieties (‘TOX 3226-53-2-2-2’ and ‘ITA 230’), which were equally considered unstable in yield by the stability variance, ?2i, were selected by YSi in addition to ‘TOX 3107’, ‘WITA 1’, ‘IR 8’ and ‘M 55’. The statistic may positively complement AMMI and GGE in selecting varieties suited to specific locations with peculiar fluctuations in environmental indices. Correlation of PC scores with environmental and agronomic variables identified total rainfall up to the reproductive stage, variation in tillering ability and plant height as the most important factors underlying the GxE interaction. Additional information from the models can be positively utilized in varietal development for different ecologies.


2015 ◽  
Vol 43 (1) ◽  
pp. 59
Author(s):  
Suprayanti Martia Dewi ◽  
Sobir , ◽  
Muhamad Syukur

Genotype x environment interaction (GxE) information is needed by plant breeders to assist the identification of superior genotype. Stability analysis can be done if there is a GxE interaction, to show the stability of a genotype when planted in different environments. This study aimed to estimate the effects of genotype x environment interaction on yield and yield components of fruit weight per plant as well as to look at the stability of 14 tomato genotypes at four lowland locations. The study was conducted at four locations, namely Purwakarta, Lombok, Tajur and Leuwikopo. Experiments at each location was arranged in a randomized complete block design with three replications. Stability analysis was performed using the AMMI model. Fruit weight, fruit diameter, number of fruits per plant and total fruit weight per plant characters showed highly significant genotype x environment interactions. Variability due to the effect of GxE interaction based on a AMMI2 contributed by 88.50%. IPBT3, IPBT33, IPBT34, IPBT60 and Intan were stable genotypes under AMMI model.<br />Keywords: AMMI, multilocation trials


Author(s):  
Dabandata Célestin ◽  
Ngalle Hermine Bille ◽  
Nsimi Mva Armand ◽  
Ndiang Zenabou ◽  
Likeng L. I. Ngue Bénoit- Constant ◽  
...  

A study was conducted to assess genotype x environment interaction and also to determine stability of okra (Abelmoschus esculentus L. Moench) genotypes for nine traits in Cameroon. Eight okra genotypes (including five parents of Cameroon and three exotics) were evaluated across three different locations (Dibang, Yagoua and Yaounde) using a randomized complete block design (RCBD) with three replications. Each plot consisted of three rows of six plants each. Genotype x environment interaction has been evaluated using SAS Software.  There was considerable variation for all traits studied among both genotypes and environments. Five different methods of stability analysis have been used for the comparison of the genotypes and also to determine the most suitable stability parameter of okra. The stability in relation to the characters is independent of the genotypes. A total correspondence (r=1) exist between the general mean and the Pi performance for characters such as 50 % flowering and the fruit peduncle length. For, the procedure of Lin and Binns appeared to be more of a genotype performance measure, rather than a stability measure. The Wricke’s and Shukla’s procedures of stability statistic showed the highest significant positive correlation (P<0.01) with the majority of the studied character. That makes these procedures equivalent for ranking purposes.


Sign in / Sign up

Export Citation Format

Share Document