scholarly journals Removal of Excessive Nitrogen and Phosphorus from Urban Wastewater Using Local Microalgal Bloom

2022 ◽  
Vol 12 (3) ◽  
pp. 19-27
Author(s):  
Sumaiya Nusrat Chaitee ◽  
Rudra Protap Biswas ◽  
Md Imran Kabir

The organic content from urban wastewater is treated with various conventional processes efficiently. However, for biological treatment of secondary effluent containing excessive inorganic nitrogen and phosphorus, microalgae can be used. In this study, algal strains have been collected from locally available natural blooms and cultured in a BG-11 medium. Spirulina sp., the blue-green algae, dominant over the other species within the natural bloom, is applied in ten different dosages (0.2-2.5 g/L) to the synthetic wastewater with a 3-day hydraulic retention time. The removal efficiency of nitrate, ammonia, and phosphate have been observed to be about 60%, 30%, and 54% respectively. The highest removal efficiency has been found at 2.5 g/L of microalgae dose. Linear forms of Langmuir and Freundlich isotherms have been used for biosorption modeling, and both isotherms fit well with R2>60% and NRMSE<11% in all cases. Additionally, the separation factor and the adsorption intensity represent the favorability of the biosorption process. Journal of Engineering Science 12(3), 2021, 19-27

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 279 ◽  
Author(s):  
Marija Stjepanović ◽  
Natalija Velić ◽  
Antonela Galić ◽  
Indira Kosović ◽  
Tamara Jakovljević ◽  
...  

The aim of the study was to screen the waste wood biomass of 10 wood species as biosorbents for synthetic dye Congo Red (CR) removal from water and to single out the most efficient species for further batch biosorption experiments. Euroamerican poplar (EP), the most efficient species achieving 71.8% CR removal and biosorption capacity of 3.3 mg g−1, was characterized by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared spectroscopy (FTIR). Different factors affecting the biosorption process were investigated: initial biosorbent concentration (1–10 g dm−3), contact time (5–360 min), initial CR concentration (10–100 mg dm−3), and the initial pH (pH = 4–9). The results showed that CR removal efficiency increased with the increase of biosorbent concentration and contact time. Increase of initial CR concentration led to an increase of the biosorption capacity, but also a decrease of CR removal efficiency. The highest CR removal efficiency was achieved at pH = 4, while at pH = 9 a significant decrease was noticed. The percentage of CR removal from synthetic wastewater was 18.6% higher than from model CR solution. The Langmuir model fitted well the biosorption data, with the maximum biosorption capacity of 8 mg g−1. The kinetics data were found to conform to the pseudo-second-order kinetics model.


2013 ◽  
Vol 67 (3) ◽  
pp. 587-593 ◽  
Author(s):  
L. Yerushalmi ◽  
M. Alimahmoodi ◽  
C. N. Mulligan

Simultaneous removal of carbon, nitrogen and phosphorus was examined along with reduced generation of biological sludge during the treatment of synthetic wastewater and hog waste by the BioCAST technology. This new multi-environment wastewater treatment technology contains both suspended and immobilized microorganisms, and benefits from the presence of aerobic, microaerophilic, anoxic and anaerobic conditions for the biological treatment of wastewater. The influent concentrations during the treatment of synthetic wastewater were 1,300–4,000 mg chemical oxygen demand (COD)/L, 42–115 mg total nitrogen (TN)/L, and 19–40 mg total phosphorus (TP)/L. The removal efficiencies reached 98.9, 98.3 and 94.1%, respectively, for carbon, TN and TP during 225 days of operation. The removal efficiencies of carbon and nitrogen showed a minimal dependence on the nitrogen-to-phosphorus (N/P) ratio, while the phosphorus removal efficiency showed a remarkable dependence on this parameter, increasing from 45 to 94.1% upon the increase of N/P ratio from 3 to 4.5. The increase of TN loading rate had a minimal impact on COD removal rate which remained around 1.7 kg/m3 d, while it contributed to increased TP removal efficiency. The treatment of hog waste with influent COD, TN and TP concentrations of 960–2,400, 143–235 and 25–57 mg/L, respectively, produced removal efficiencies up to 89.2, 69.2 and 47.6% for the three contaminants, despite the inhibitory effects of this waste towards biological activity. The treatment system produced low biomass yields with average values of 3.7 and 8.2% during the treatment of synthetic wastewater and hog waste, respectively.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3060
Author(s):  
Liang Li ◽  
Kun Chi

This study compared the growth of the microalgae Scenedesmus dimorphus in synthetic wastewater and actual wastewater under different cultivation conditions, in terms of nitrogen and phosphorus availability, wastewater quality, light condition and CO2 addition. The results show that the form of nitrogen source had a significant effect on the growth of microalgae. Urea as a nitrogen source increased the growth rate of S. dimorphus significantly, while the high concentration of inorganic nitrogen inhibited the growth. When phosphate was 4 mg/L and pH was 7, the growth of S. dimorphus was the greatest. The bacteria in actual wastewater not only promote the growth of microalgae but also facilitate the formation of flocs, which is conducive to biomass harvest. With the increase in light intensity and light duration, S. dimorphus showed primarily an increasing and then a decreasing trend. Higher light intensity was required in actual wastewater than in synthetic wastewater, which may be due to the barrier effect of wastewater turbidity. S. dimorphus grew well in both kinds of wastewater with the addition of 2% CO2.


2018 ◽  
Vol 5 (4) ◽  
pp. 197-203 ◽  
Author(s):  
Sepideh Sadeghi ◽  
Ghazal Raki ◽  
Asrin Amini ◽  
Nezamaddin Mengelizadeh ◽  
Mohammad Mehdi Amin ◽  
...  

Background: Dye and colored materials cause health risks in water and therefore, must be removed from water supplies and wastewater. The aim of this study was to evaluate the effectiveness of the third generation poly(amidoamine) (PAMAM) and poly (propylene imine) dendrimers (PPI-G3) in the removal of reactive blue 19 (RB19) dye from aqueous solutions and determine the optimum conditions for the removal. Methods: This study was performed in a laboratory and batch scale. In this study, synthetic wastewater was examined with three different concentrations of RB19 (25, 50, and 100 mg/L), different pHs (3, 7, and 10), various amounts of dendrimer (0.4, 0.8, 1.2, and 1.6 g/L), and at different times (15, 30, and 60 minutes) during the adsorption process. The remaining amount of dye was measured by spectrophotometer at 592 nm wavelength. Langmuir and Freundlich isotherms were also tested. Results: The results showed that by increasing the reaction time and adsorbent dosage, the rate of dye removal increased while by increasing the initial dye concentration and pH, the dye removal efficiency was significantly decreased. In this study, with increase of pH from 3 to 10, dye removal efficiency at a concentration of 25 mg/L, decreased from 72% to 20% and 88% to 17% by PAMAM and PPI dendrimers, respectively. Excel software was used for data analysis. Conclusion: Both adsorbents had a good dye removal efficiency, but PPI dendrimer was more effective in removing RB19. Adsorption data followed the Langmuir isotherm.


2011 ◽  
Vol 396-398 ◽  
pp. 1995-2001
Author(s):  
Lian Yu

Based on a modified Carrousel oxidation ditch process acclimated with synthetic wastewater,effect of SRT on nitrogen and phosphorus removal occurred in the system was investigated. The results indicated that SRT was prominent to nitrogen and phosphorus removal. The removal efficiency of nitrogen was better with SRT extension and that the removal efficiency of phosphorus was better with SRT shortness. With the operation conditions of water temperature 30°C, SRT 11days, the removal efficiency of TN and TP reached 85.4% and 74.9%, which indicated that nitrogen and phosphorus removals were best.


2015 ◽  
Vol 72 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Qifeng Liu ◽  
Cong Du ◽  
Ting Yang ◽  
Zhimin Fu

Abstract An internal-circulate sequencing batch airlift reactor (IC-SBAR) has been developed to evaluate the efficiency of phenol and ammonia removal in treating synthetic wastewater. This study examined the effect of operation cycle on this system. Results showed that above 97.0% removal efficiencies of ammonia and phenol were achieved, which indicated that ammonia and phenol removals were not related to operation cycle. The average removal efficiency of 91.7% for chemical oxygen demand (COD) was achieved when the static/aerobic/settling time was 240 min/440 min/40 min. It was found that COD removal efficiency increased due to the time of operation cycle being prolonged. The average removal efficiencies of total inorganic nitrogen (TIN) were 65.8, 69.3 and 68.9% when average TIN concentrations were 78.0, 97.6 and 88.4 mg/L, respectively, in the influent. A cycle study showed that most phenol was degraded by aerobic microbes. Increasing the static time from 120 to 240 min resulted in the accumulation of NO2−-N, which indicated that the structures of the nitrifying bacterial community were changed.


2002 ◽  
Vol 46 (9) ◽  
pp. 193-200 ◽  
Author(s):  
Z. Ujang ◽  
M.R. Salim ◽  
S.L. Khor

A laboratory-scale membrane bioreactor (MBR) was fed with synthetic wastewater to investigate the possibility of simultaneous removal of organic, nitrogen and phosphorus by intermittent aeration. The MBR consists of two compartments using a microfiltration membrane with 0.2 mm pore size and a surface area of 0.35 m2. Hydraulic retention time was set at 24 hours and solid retention time 25 days. MLSS concentration in the reactor was in the range of 2,500-3,800 mg/L. The MLSS internal recycling ratio was maintained at 100% influent flow rate. Intermittent aeration was applied in this study to provide an aerobic-anaerobic cycle. Three stages of operations were conducted to investigate the effect of aeration and non-aeration on simultaneous organic and nutrient removal. In Stage 1, time cycles of aeration and non-aeration were set at 90/150 min and 150/90 min in the first and second compartment, the removal efficiency was 97%, 94% and 70% for COD, nitrogen and phosphorus respectively. In Stage 2, time cycles of aeration and non-aeration were set at 60/120 min and 120/60 min in the first and second compartment, the removal efficiency was 97%, 96% and 71% for COD, nitrogen and phosphorus respectively. In Stage 3, time cycles of aeration and non-aeration were set at 120/120 min and 120/120 min in compartment 1 and 2, the removal efficiency was 98%, 96% and 78% for COD, nitrogen and phosphorus respectively. Results show that longer non-aeration time in the second compartment provided better performances of biological phosphorus removal.


2021 ◽  
Vol 11 (11) ◽  
pp. 4995
Author(s):  
Marco Custódio ◽  
Paulo Cartaxana ◽  
Sebastián Villasante ◽  
Ricardo Calado ◽  
Ana Isabel Lillebø

Halophytes are salt-tolerant plants that can be used to extract dissolved inorganic nutrients from saline aquaculture effluents under a production framework commonly known as Integrated Multi-Trophic Aquaculture (IMTA). Halimione portulacoides (L.) Aellen (common name: sea purslane) is an edible saltmarsh halophyte traditionally consumed by humans living near coastal wetlands and is considered a promising extractive species for IMTA. To better understand its potential for IMTA applications, the present study investigates how artificial lighting and plant density affect its productivity and capacity to extract nitrogen and phosphorous in hydroponic conditions that mimic aquaculture effluents. Plant growth was unaffected by the type of artificial lighting employed—white fluorescent lights vs. blue-white LEDs—but LED systems were more energy-efficient, with a 17% reduction in light energy costs. Considering planting density, high-density units of 220 plants m−2 produced more biomass per unit of area (54.0–56.6 g m−2 day−1) than did low-density units (110 plants m−2; 34.4–37.1 g m−2 day−1) and extracted more dissolved inorganic nitrogen and phosphorus. Overall, H. portulacoides can be easily cultivated hydroponically using nutrient-rich saline effluents, where LEDs can be employed as an alternative to fluorescent lighting and high-density planting can promote higher yields and extraction efficiencies.


Author(s):  
Natália Rodrigues Guimarães ◽  
Fabiane Dörr ◽  
Rodrigo de Oliveira Marques ◽  
Ernani Pinto ◽  
Sidney Seckler Ferreira Filho

Sign in / Sign up

Export Citation Format

Share Document