scholarly journals The Efficacy of the WRF-ARW Model in the Genesis and Intensity Forecast of Tropical Cyclone Fani over the Bay of Bengal

2022 ◽  
Vol 12 (3) ◽  
pp. 85-100
Author(s):  
Md Shakil Hossain ◽  
Md Abdus Samad ◽  
SM Arif Hossen ◽  
SM Quamrul Hassan ◽  
MAK Malliak

An attempt has been carried out to assess the efficacy of the Weather Research and Forecasting (WRF) model in predicting the genesis and intensification events of Very Severe Cyclonic Storm (VSCS) Fani (26 April – 04 May 2019) over the Bay of Bengal (BoB). WRF model has been conducted on a single domain of 10 km horizontal resolution using the Global Data Assimilation System (GDAS) FNL (final) data (0.250 × 0.250). According to the model simulated outcome analysis, the model is capable of predicting the Minimum Sea Level Pressure (MSLP) and Maximum Sustainable Wind Speed (MSWS) pattern reasonably well, despite some deviations. The model has forecasted the Lowest Central Pressure (LCP) of 919 hPa and the MSWS of 70 ms-1 based on 0000 UTC of 26 April. Except for the model run based on 0000 UTC of 26 April, the simulated values of LCP are relatively higher than the observations. According to the statistical analysis, MSLP and MSWS at 850 hPa level demonstrate a significantly greater influence on Tropical Cyclone (TC) formation and intensification process than any other parameters. The model can predict the intensity features well enough, despite some uncertainty regarding the proper lead time of the model run. Reduced lead time model run, particularly 24 to 48 hr, can be chosen to forecast the genesis and intensification events of TC with minimum uncertainty. Journal of Engineering Science 12(3), 2021, 85-100

2021 ◽  
Vol 69 (2) ◽  
pp. 101-108
Author(s):  
Md Shakil Hossain ◽  
Md Abdus Samad ◽  
Most Razia Sultana ◽  
MAK Mallik ◽  
Md Joshem Uddin

An attempt has been made to assess the capability of the Weather Research and Forecasting (WRF) model in simulating the track and landfall characteristics of Tropical Cyclone (TC) Fani (25th April – 05th May 2019) over the Bay of Bengal (BoB). WRF model has conducted on a single domain of 10 km horizontal resolution using Global Data Assimilation System (GDAS) data (0.250×0.250). The model predicted outcomes show auspicious agreement with the observed datasets of the Bangladesh Meteorological Department (BMD) and India Meteorological Department (IMD). It is found that the diminished lead time of the model run plays a crucial role in delivering good consistency with the minimum forecast uncertainty. A strong correlation between the track and intensity forecast deviations has also been determined. According to the results, the model simulation which captures the minimum deviation in the intensity forecast also ensures better track prediction of the system. The feasibility of the track and landfall forecast by the model even up to 27 hr advance is reasonably well. Finally, it can be decided that the model is capable to predict the cyclonic storm Fani precisely and it can be chosen confidently for future events over the BoB. Dhaka Univ. J. Sci. 69(2): 101-108, 2021 (July)


Author(s):  
Ariful Alam ◽  
Shammy Ahmed ◽  
Sharmin Rahman ◽  
Umme Habiba ◽  
Muhammad Abul Kalam Mallik ◽  
...  

Almost every year, tropical cyclone forms over the Bay of Bengal in pre-monsoon and post-monsoon which strikes Bangladesh coast and the east coast of India. As the full thermodynamic features of a cyclone is not solved yet, an attempt has been made to simulate the track and landfall of cyclonic disturbances over the Bay of Bengal by using Weather Research and Forecasting (WRF) model. The WRF model (version 3.8) was run in a single domain of 20 km horizontal resolution. The model was run using WRF Single-Moment 3- class microphysics scheme, Kain- Fritsch (new Eta) cumulus physics scheme, Yonsei University planetary boundary layer scheme, revised MM5 surface layer physics scheme, Rapid Radiative Transfer Model (RRTM) for long-wave and Dudhia scheme for short-wave scheme. The model was run for 24-h, 48-h, 72-h and 96-h using the National Centre for Environmental Prediction (NCEP) high-resolution Global Final (FNL) Analysis 6-hourly data using initial and lateral boundary conditions. The model simulated landfall position errors are found 53 km, 129 km, 119km and 23 km and time errors are found 02 E, 06 D, 02 E and 00 for 96-h, 72-h, 48-h and 24-h model run respectively (E indicates Earlier and D indicates Delay). The minimum time and position error is found in 24-hrs simulation. The spatial distribution is captured by the model is almost appropriate but the computational station rainfall is found less than that of observed rainfall. The Dhaka University Journal of Earth and Environmental Sciences, Vol. 10(1), 2021, P 33-45


2016 ◽  
Vol 8 (2) ◽  
pp. 129-147
Author(s):  
M. A. E. Akhter ◽  
M. M. Alam ◽  
M. A. K. Mallik

Tropical cyclone (TC), one of the most devastating and deadly weather phenomena,is a result of organized intense convective activities over warm tropical oceans. In the recent years, mesoscale models are extensively used for simulation of genesis, intensification and movement of tropical cyclones. During 09-16 November, 2007, a severe cyclonic storm named, Sidr was active in the Bay of Bengal part of the Indian Ocean. At 16 UTC on 15 November 2007, the system crossed Bangladesh coast near at long. 89.8 °E. In the present study, two state-of-the-art mesoscale models, MM5 and WRF, have been used to simulate the structure and track of TC Sidr. Horizontal resolution of 90 km and 30 km respectively for mother and nested domain were used in both the models. Various meteorological fields’ viz. central pressure, winds, vorticity, temperature anomaly etc. obtained from the simulations are verified against those observed to test their performance. The simulated tracks are also compared with those obtained from JTWC. The results indicate that MM5 model has better forecast skill in terms of intensity prediction but WRF model has better forecast skill in terms of track prediction of the cyclonic storm.


2019 ◽  
Vol 67 (1) ◽  
pp. 33-40
Author(s):  
Md Jafrul Islam ◽  
Ashik Imran ◽  
Ishtiaque M Syed ◽  
SM Quamrul Hassan ◽  
Md Idris Ali

The sensitivity of Microphysics Parameterization (MP) schemes has been analyzed in the prediction of intensity and track of tropical cyclone (TC) Mora (28th May-31st May, 2017), over the Bay of Bengal (BoB) using WRF model. The study of MP schemes in numerical simulation is important because it includes microphysical process and cloud dynamics that controls the latent heat release in clouds. In this study seven MP schemes (Kessler, Lin, WSM3, Eta, WSM6, MYDM7, and WDM5) are used to study the variation in Mean Sea Level Pressure (MSLP), Maximum Wind Speed (MWS), rainfall distributions, and Tracks. The root mean square error (RMSE) of MSLP, MWS and 72-h simulated tracks are found minimum for WSM3 scheme while the RMSE of rainfall, 48 and 24-h simulated tracks are found minimum for WDM5 scheme. In conclusion, WSM3 and WDM5 schemes may give better results in the prediction of slowly intensifying TC like Mora. Dhaka Univ. J. Sci. 67(1): 33-40, 2019 (January)


2019 ◽  
Vol 230 ◽  
pp. 104651 ◽  
Author(s):  
P. Reshmi Mohan ◽  
C. Venkata Srinivas ◽  
V. Yesubabu ◽  
R. Baskaran ◽  
B. Venkatraman

2020 ◽  
Vol 177 (11) ◽  
pp. 5523-5550
Author(s):  
J. R. Rajeswari ◽  
C. V. Srinivas ◽  
P. Reshmi Mohan ◽  
B. Venkatraman

2020 ◽  
Author(s):  
Xiaohao Qin ◽  
Wansuo Duan ◽  
Hui Xu

<p>The present study uses the nonlinear singular vector (NFSV) approach to identify the optimally-growing tendency perturbations of the Weather Research and Forecasting (WRF) model for tropical cyclone (TC) intensity forecasts. For nine selected TC cases, the NFSV-tendency perturbations of the WRF model, including components of potential temperature and/or moisture, are calculated when TC intensities are forecasted with a 24-hour lead time, and their respective potential temperature components are demonstrated to have more impact on the TC intensity forecasts. The perturbations coherently show barotropic structure around the central location of the TCs at the 24-hour lead time, and their dominant energies concentrate in the middle layers of the atmosphere. Moreover, such structures do not depend on TC intensities and subsequent development of the TC. The NFSV-tendency perturbations may indicate that the model uncertainty that is represented by tendency perturbations but associated with the inner-core of TCs, makes larger contributions to the TC intensity forecast uncertainty. Further analysis shows that the TC intensity forecast skill could be greatly improved as preferentially superimposing an appropriate tendency perturbation associated with the sensitivity of NFSVs to correct the model, even if using a WRF with coarse resolution.</p><div> <div> </div> </div>


2015 ◽  
Vol 39 (2) ◽  
pp. 157-167 ◽  
Author(s):  
KM Zahir Rayhun ◽  
DA Quadir ◽  
MA Mannan Chowdhury ◽  
MN Ahasan ◽  
MS Haque

An attempt was made to simulate the structure, track, landfall and a few dynamical aspects of the tropical cyclone Bijli that formed over the Bay of Bengal using WRF-ARW model. WRF model was run in a single domain using KF cumulus parameterization schemes with WSM 3 micro physics and YSU planetary boundary layer scheme. The ARW model was run for 24, 48, 72 and 96 hrs to simulate structure, track and landfall of tropical cyclones Bijli. The different simulated parameters viz. minimum sea level pressure, maximum wind speed, convective available potential energy and relative vorticity have been studied. The results showed that the model is capable to forecast the formation of the first depression 60 - 78 hrs in advance. This indicates the high and unique predictive power of ARW model for predicting the tropical cyclone formation. The model generates a realistic structure of the tropical cyclones with high spatial details. This was possible due to the higher spatial resolution of the regional model. One of the outstanding findings of the study is that the model was successfully predicted the tracks, recurvature and probable areas and time of landfall of the selected tropical cyclone Bijli with high accuracy even in the 96 hrs predictions.Journal of Bangladesh Academy of Sciences, Vol. 39, No. 2, 157-167, 2015


Sign in / Sign up

Export Citation Format

Share Document