scholarly journals Influence of Rice Husk Ash on the Properties of Concrete

2016 ◽  
Vol 9 (1) ◽  
pp. 29-33
Author(s):  
MB Hossain ◽  
KM Shaad ◽  
MS Rahman ◽  
P Bhowmik

This research was carried out to investigate various physical properties of Rice Husk Ash (RHA) and, some physical and mechanical properties of concrete incorporating RHA in different proportions. The concrete specimens were tested at 7, 21 and 28 days after curing. Test results revealed that the specific gravity of RHA was found lower than that of sand. The density of concrete containing RHA was recorded between 80-110 lb.ft-3, which is lower than conventional concrete. Water absorption was found increasing with the increase of RHA content in concrete specimens. There were significant variations in compressive strength values of concrete containing 5%, 10% and 20% volume of RHA. The compressive strength of 5% RHA specimen was 150-200% higher than that of other specimens. Hence, upto 5% replacement of RHA could be recommended for making normal lightweight concrete. The splitting tensile strength was about 9-10% of compressive strength. It was concluded that upto 5% RHA can be used effectively in making normal lightweight concrete. The higher percentage of RHA could be used in making non-structural concrete where the strength of concrete is not concerned.J. Environ. Sci. & Natural Resources, 9(1): 29-33 2016

2013 ◽  
Vol 465-466 ◽  
pp. 1297-1303 ◽  
Author(s):  
Hassan Usman Jamo ◽  
Mohamad Zaky Noh ◽  
Zainal Arifin Ahmad

Rice Husk Ash (RHA) is a by-product of the agricultural industry which contains high amount of silica. Active silica from RHA has been used progressively to substitute quartz in a porcelain composition and the effect this substitution in relation to temperature on physical and mechanical properties has been investigated. It was found that progressive substitution of RHA in a porcelain composition resulted in early vitrification of the mixture. The compressive strength was highest and the porosity was the least at a temperature of 1200°C on 20wt% substitution of RHA. The improvement in the properties could be attributed to sharp changes in the microstructural features as a result of increase in mullite and glassy phase simultaneously. Hence the extension of study on microstructure and morphology has influence on the physical and mechanical properties.


2019 ◽  
Vol 276 ◽  
pp. 01020 ◽  
Author(s):  
Habib Abdurrahman ◽  
Mia Qoryati ◽  
Muklisin Olivia ◽  
Monita Olivia

A waste tyre is an inorganic rubber waste that is difficult to decompose since it has a complex structure. Utilization of waste tyre as a material to improve elastic properties in rigid pavement construction in peat environment has not investigated yet. The rigid pavement in peat environment needs to be impermeable and posses high elastic properties. This paper presents mechanical properties and porosity of concrete incorporating crumb rubber as an additive in concrete mixture with a variation of 10%, 20%, and 30% by fine aggregates volume. Rice husk ash is added as a filler in various percentage (5%, 10%, and 15%) by cement volume in the mixture. Concrete is produced with a target strength of 35 MPa. In this research, the OPC concrete mix is used as a control mix. Mechanical properties taken were the compressive strength, tensile strength, flexural strength, modulus of elasticity, and porosity at 7, 14 and 28 days. Results show that crumb rubber and rice husk ash addition increases compressive strength, improves elastic properties, i.e., tensile strength, flexural strength, modulus of elasticity, and reduce the porosity of the concrete. It can be concluded that the crumb rubber is potential as an environmentally friendly additive as rigid pavement material in peat environment.


Author(s):  
Acodji V. Pamphile ◽  
Doko K. Valéry ◽  
Olodo E. T. Emmanuel ◽  
Datchossa Tiambo Abbas

The present study aims to reduce the use of cement and encourage the utilization of plant biomass.  The rice husk ash (loading: 2, 6, 10, 15, 25, 30, 35, 40, 45 and 50%) was used as a cement substitute.  The effects of rice husk ash on the physical and mechanical properties of cement matrix composite was investigated. The results of this study show a drop in compressive strength of 19.75 to 5.10 between M0 and MR50 with a remarkable value of 17.02MPa at 10% (MR10). Likewise, we have a variation of the flexural strength from 2.96 to 0.47 between M0 and MR50 with a remarkable value of 1.87 at 10% (MR10). The material MR10 is light and can be used as a filling element.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


2015 ◽  
Vol 804 ◽  
pp. 129-132
Author(s):  
Sumrerng Rukzon ◽  
Prinya Chindaprasirt

This research studies the potential for using waste ash from industrial and agricultural by-products as a pozzolanic material. Classified fly ash (FA) and ground rice husk ash (RA) were the materials used. Water requirement, compressive strength and porosity of cement mortar were investigated. Test results indicated that FA and RA (waste ash) have a high potential to be used as a good pozzolanic material. The water requirement of mortar mix decreases with the increases in fly ash content. For ground rice husk ash (RA), the water requirement of mortar mix increases with the increases in rice husk ash content. In addition, the reduction in porosity was associated with the increase in compressive strength.


2019 ◽  
Vol 798 ◽  
pp. 364-369 ◽  
Author(s):  
Khemmakorn Gomonsirisuk ◽  
Parjaree Thavorniti

The aim of this work is to study the feasibility of preparation of fly ash based geopolymer using sodium water glass from agricultural waste as alternative activators. Rice husk ash and bagasse ash were used as raw materials for producing sodium water glass solution. The sodium water glass were produced by mixing rice husk ash and bagasse ash with NaOH in ball mill and boiling. The prepared sodium water glass were analyzed and used in geopolymer preparation process. The geopolymer paste were prepared by adding the obtained water glass and NaOH with fly ash. After cured at ambient temperature for 7 days, mechanical properties were investigated. Bonding and phases of the geopolymer were also characterized. The geopolymer from rice husk ash presented highest compressive strength about 23 MPa while the greatest for bagasse ash was about 16 MPa.


2010 ◽  
Vol 168-170 ◽  
pp. 1325-1329
Author(s):  
Ye Ran Zhu ◽  
Jun Cai ◽  
Dong Wang ◽  
Guo Hong Huang

This paper investigates the mechanical properties (compressive strength, splitting tensile strength and flexural toughness) of polypropylene fiber reinforced self-compacting concrete (PFRSCC). The effect of the incorporation of polypropylene fiber on the mechanical properties of PFRSCC is determined. Four point bending tests on beam specimens were performed to evaluate the flexural properties of PFRSCC. Test results indicate that flexural toughness and ductility are remarkably improved by the addition of polypropylene fiber.


2020 ◽  
Vol 53 (6) ◽  
Author(s):  
Fan Wu ◽  
Qingliang Yu ◽  
Changwu Liu ◽  
H. J. H. Brouwers ◽  
Linfeng Wang ◽  
...  

AbstractThe heat-treated apricot shell can be utilized as coarse aggregates for producing sustainable bio-based lightweight concrete with good compressive strength but poor tensile strength. In order to improve the tensile properties of apricot shell concrete (ASC), the effects of polypropylene (PP) fibre, glass (G) fibre and basalt (B) fibre at various volume fractions (Vf) (0.25%, 0.5% and 0.75%) on the performance of ASC were investigated. The results indicated that the fibre type had no significant effect on the physical properties of ASC such as slump, density, water absorption and permeable porosity. However, the slump of ASC decreases with an increase in fibre content. The B fibre has a better improvement in mechanical properties than the PP fibre and G fibre thanks to the better elastic modulus and tensile strength. When the Vf was 0.5%, the compressive strength, splitting tensile strength, flexural strength and modulus of elasticity of ASC reinforced with B fibre were increased by 16.7%, 29.1%, 29.2%, and 18.1%, respectively, compared to ASC without any fibres. The magnesium sulfate attack results showed that the incorporation of the B fibre decreased the mass loss and compressive strength of ASC exposed to a MgSO4 solution for 6 months because the fibre arrested the microcracks caused by the expansive stress. It is concluded that the mechanical properties of bio-based ASC and its resistance to magnesium sulfate attack can be significantly improved by incorporating 0.5% B fibre.


Sign in / Sign up

Export Citation Format

Share Document