Innovative Approach to Information Search by Example of a Patent Analysis of an Important Substitution Plan

Author(s):  
Maria A. Milkova

Nowadays the process of information accumulation is so rapid that the concept of the usual iterative search requires revision. Being in the world of oversaturated information in order to comprehensively cover and analyze the problem under study, it is necessary to make high demands on the search methods. An innovative approach to search should flexibly take into account the large amount of already accumulated knowledge and a priori requirements for results. The results, in turn, should immediately provide a roadmap of the direction being studied with the possibility of as much detail as possible. The approach to search based on topic modeling, the so-called topic search, allows you to take into account all these requirements and thereby streamline the nature of working with information, increase the efficiency of knowledge production, avoid cognitive biases in the perception of information, which is important both on micro and macro level. In order to demonstrate an example of applying topic search, the article considers the task of analyzing an import substitution program based on patent data. The program includes plans for 22 industries and contains more than 1,500 products and technologies for the proposed import substitution. The use of patent search based on topic modeling allows to search immediately by the blocks of a priori information – terms of industrial plans for import substitution and at the output get a selection of relevant documents for each of the industries. This approach allows not only to provide a comprehensive picture of the effectiveness of the program as a whole, but also to visually obtain more detailed information about which groups of products and technologies have been patented.

2018 ◽  
pp. 114-119
Author(s):  
O. I. Nemykin

Traditional methods of the theory of statistical solutions are developed for cases of making single-valued two-alternative or multialternative solutions about the class of an object. Assuming the possibility of ambiguous multi-alternative (in the case of solving the problem of selection of space objects of three-alternative) decisions on the classification of of space objects at the stages of the selection process, a modification of the traditional statistical decision making algorithm is required. Such a modification of the algorithm can be carried out by appropriate selection of the loss function. In the framework of the Bayes approach, an additive loss function is proposed, the structure of which takes into account a priori information on the structure and composition of launch elements in relation to the classes «Launch vehicle» and «spacecraft». The algorithm of decision making is synthesized under the conditions of a priori certainty regarding the probabilistic description of the analyzed situation. It is shown that the problem of verifying three-alternative hypotheses can be reduced to an independent verification of three two-alternative hypotheses, which makes it possible to take particular solutions in the solution process and use a different set of the signs of selection for the formation of solutions for individual classes of space objects. The peculiarities of the implementation of the selection algorithm are discussed in the presence of a priori information and measurement information on starts of a limited volume. The synthesized Bayesian decision making algorithm has the properties necessary to solve the problem of selection of space objects at launch in real conditions in the presence of measuring information specified in the form of a training sample. Its architecture allows to form unambiguous and ambiguous decisions about each space object in the launch.


2020 ◽  
Vol 12 (9) ◽  
pp. 173
Author(s):  
Tâmara Rebecca A. de Oliveira ◽  
Moysés Nascimento ◽  
Paulo R. Santos ◽  
Kleyton Danilo S. Costa ◽  
Thalyson V. Lima ◽  
...  

Changes in the relative performance of genotypes have made it necessary for more in-depth investigations to be carried out through reliable analyses of adaptability and stability. The present study was conducted to compare the efficiency of different informative priors in the Bayesian method of Eberhart & Russel with frequentist methods. Fifteen black-bean genotypes from the municipalities of Belém do São Francisco and Petrolina (PE, Brazil) were evaluated in 2011 and 2012 in a randomized-block design with three replicates. Eberhart & Russel’s methodology was applied using the GENES software and the Bayesian procedure using the R software through the MCMCregress function of the MCMCpack package. The quality of Bayesian analysis differed according to the a priori information entered in the model. The Bayesian approach using frequentist analysis had greater accuracy in the estimate of adaptability and stability, where model 1 which uses the a priori information, was the most suitable to obtain reliable estimates according to the BayesFactor function. The inference, using information from previous studies, showed to be imprecise and equivalent to the linear-model methodology. In addition, it was realized that the input of a priori information is important because it increases the quality of the adjustment of the model.


2021 ◽  
pp. 1-26
Author(s):  
Roman Z. Morawski

Abstract It is argued, in this paper, that the core operation underlying any measurement – the inverse modelling under uncertainty – is equivalent to quantitative abductive reasoning which consists in the selection of the best estimate of a measurand (i.e. a quantity to be measured) in a set of admissible solutions, using a priori information: (i) on the measurand, (ii) on the measuring system coupled with an object under measurement, and (iii) on the influence of the environment including the user of the measurement results. There are two key premises of this claim: a systematic interpretation of measurement in terms of inverse problems, proposed earlier by the author, and a logical link between inverse problems and abduction, identified by the Finnish philosopher of science Ilkka Niiniluoto. The title claim of this paper is illustrated with an expanded example of measuring optical spectrum by means of a low-resolution spectrometer.


2021 ◽  
pp. 47-52
Author(s):  
Nadezhda Pimanova ◽  
Viktor Spiridonov

In GIS INTEGRO, a program using the discrete Fourier transform is created to solve the 3D inverse problem of gravimetry. The result of its work is a 3D distribution of the effective density. The program allows to use an extended parametrization of the form: fα,β(r,x) = f(r,zα)|z|–β. By changing the parameters α — "depth multiplier" — and β — "exponent at z"— one can obtain various equivalent distributions of effective densities and choose the most appropriate one based on a priori information. The experience of solving the 3D inverse problem by this method with different set values of these parameters allowed us to recommend the optimal values. As a criterion for choosing a solution from a variety of possible solutions, it is proposed to use a comparison of them with the data of seismic studies of the DDS and the CCP.


Author(s):  
Fabrizio Vestroni ◽  
Danilo Capecchi ◽  
Elena Antonacci

Abstract In the field of civil engineering the availability of experimental data is often limited, so that it is imperative the use of all the available a priori information on the behavior of the structure. In this work a procedure is presented for the identification of a finite element model of a linear or nonlinear structures, which allows to meet this requirement. The procedure is framed within the output error techniques, which, while requiring more complex algorithm, can be easily extended from linear to nonlinear structures. The whole solution strategy is maintained with the single difference of the observed quantities: they are modal quantities in the linear case, while the time histories of the response is used in the nonlinear case. Two sample problems are presented. The identifiability aspects, the amplification of errors in the identification procedure and the optimal selection of parameters and measurements are discussed.


2021 ◽  
Vol 45 (4) ◽  
pp. 589-599
Author(s):  
I.A. Kudinov ◽  
M.B. Nikiforov ◽  
I.S. Kholopov

We derive analytical expressions for calculating the number of elementary computational operations required to generate several personal regions of interest in a panoramic computer-vision distributed-aperture system using two alternative strategies: strategy 1 involves acquisition of a complete panoramic frame, followed by the selection of personal regions of interest, while with strategy 2 the region of interest is directly formed for each user. The parameters of analytical expressions include the number of cameras in the distributed system, the number of users, and the resolution of panorama and user frames. The formulas obtained for the given parameters make it possible to determine a strategy that would be optimal in terms of a criterion of the minimum number of elementary computational operations for generating multiple personal regions of interest. The region of interest is generated using only a priori information about the internal and external camera parameters, obtained as a result of their photogrammetric calibration with a universal test object, and does not take into account information about scene correspondences at the boundaries of intersecting fields of view.


Author(s):  
M. Kusiy

Introduction.  During the training of emergency specialists, the development of a clear, structured thinking is important.  And the mathematical disciplines themselves are aimed at activating the intellectual activity of cadets and students, the ability to think logically, consistently, and reasonably.  However, cadets and students consider mathematics to be a complex, inaccessible and not very necessary science.  Therefore, there is a need for continuous, continuous development of methods, technologies of forms of training that would increase interest, accessibility to mathematical disciplines and at the same time, were aimed at improving the quality of training of future rescuers. Purpose.  Identify the main stages of teaching higher mathematics for future civil defense specialists and substantiate their peculiarities. Methods.  The article used methods of scientific knowledge (general), methods used in the empirical and theoretical levels of research (transition from abstract to specific).  Results.  The basic stages of teaching higher mathematics for future specialists of civil defense are determined: motivation, research, assimilation, application.  The proposed stages are analyzed in detail.  The regularities that contribute to the increase of motivation (selection of educational material, system approach, creative approach, a variety of forms and methods of teaching, taking into account the specifics of the future profession, the use of innovative teaching technologies) are highlighted.  There are three phases of knowledge (curiosity, curiosity, theoretical knowledge).  It is determined that for the acquisition of knowledge it is possible to use the information - search type of classes with its microstructure.  Planning the microstructure of occupations in the first place should put the level of cognitive activity, awareness and independence in the performance of educational tasks.  It is noted that the process of assimilation is the process of internalization of knowledge, putting it into the inner plan of man, and the application is to extraorise knowledge, make it to the outline of human activity.  It was investigated that the stage of application of knowledge is divided into two parts (the first is the application of knowledge, skills in standard terms, the second - the transfer of knowledge, skills, skills in new, changed conditions).  Examples of applied tasks that can be solved in higher mathematics classes are given.  It is substantiated that only in combination of all stages is formed the need for knowledge acquisition and their application. Conclusion.  Stages of teaching higher mathematics - a cyclical process that requires constant improvement, hard work of the teacher.  Stages of motivation and application combine the same laws (selection of educational material, creative approach, taking into account the specifics of the future profession, the use of innovative teaching technologies).  And only in a logical, thought-out combination of these stages can one form the future need for civil protection specialists to expand the knowledge and apply it to practical application.


Sign in / Sign up

Export Citation Format

Share Document