scholarly journals Prediction of the composition of prolonged release tablets based on 4,4'-(propandiamido) sodium dibenzoate using the SeDeM method

2021 ◽  
Vol 10 (4) ◽  
pp. 54-62
Author(s):  
Ju. M. Kotsur ◽  
Ju. M. Ladytko ◽  
I. A. Narkevich ◽  
E. V. Flisyuk

Introduction. Direct compression technology is one of the most common tablet technologies. As known, many active pharmaceutical ingredients are not suitable for this technology without the addition of special excipients. A useful tool for determining the suitability of powdered materials for direct compression technology is the Sediment Delivery Model (SeDeM) method, based on the concept of Quality by Design. The presented method allows not only to assess the suitability of a material for direct compression, but also helps to predict the composition of a solid dosage form in the form of a tablet, which, in turn, leads to a significant reduction in experimental work carried out in the development of a new drug.Aim. Prediction of the compositions of matrix tablets based on sodium 4,4'-(propanediamido)dibenzoate with prolonged release, obtained by direct compression using the method of mathematical modeling SeDeM.Materials and methods. The objects of the study were the original substance sodium 4,4'-(propanediamido)dibenzoate, as well as a number of auxiliary substances, which included polymers used for dosage forms with prolonged release, a dusting component – magnesium stearate, and a filler – lactose monohydrate. Physicochemical and technological properties of APIs, explosives, obtained tablet mixtures and tablets were studied in accordance with the requirements of the State Pharmacopoeia of the Russian Federation XIV ed. and EP 9th ed.Results and discussion. The properties of the substance and excipients were assessed in accordance with the SeDeM method. It was found that the substance 4,4'-(propanediamido) sodium dibenzoate is not suitable for direct pressing due to poor flowability and low compressibility. Hypromellose Methocel K4M had good compressibility, but it did not have sufficient flowability. The other tested polymers had satisfactory properties for the direct compression technology. The composition of the tablet mixtures was calculated using the SeDeM method, the obtained tablet mixtures had satisfactory technological characteristics for obtaining tablets by direct compression. The tablets obtained as a result of the experiment also met the pharmacopoeial requirements.Conclusion. Prediction of the composition of sustained-release tablets based on the original substance sodium 4,4'-(propanediamido)dibenzoate was carried out using the SeDeM method. It was found that this method is suitable for the development of the composition of tablets based on sodium 4,4'-(propanediamido)dibenzoate.

2021 ◽  
Vol 10 (5) ◽  
pp. 131-136
Author(s):  
Asim pasha ◽  
C N Somashekhar

The aim of the present work was to develop sustained release Lornoxicam matrix tablets with polymers like HPMC K15M, Ethyl cellulose, and Crospovidone as carriers in varying quantities. Direct compression was used to make matrix tablets. Various assessment parameters, such as hardness, friability, thickness, percent drug content, weight variation, and so on, were applied to the prepared formulations. In vitro dissolution studies were carried out for 24 hrs. The tablets were subjected to in-vitro drug release in (pH 1.2) for first 2 hrs. Then followed by (pH 6.8) phosphate buffer for next 22 hrs. And the results showed that among the six formulations FL3 showed good dissolution profile to control the drug release respectively. The drug and polymer compatibility were tested using FT-IR spectroscopy, which revealed that the drug was compatible with all polymers. It is also required to design an appropriate prolonged release formulation for Lornoxicam in order to maintain the drug's release. Hence by using the compatible polymers sustained release tablets were formulated and subjected for various types of evaluation parameters like friability, hardness, drug content and dissolution behaviour. Finally, the findings reveal that the prepared sustained release matrix tablets of lornoxicam have improved efficacy and patient compliance.


Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


Author(s):  
Nirmala Rangu ◽  
Gande Suresh

The present study was aimed to develop once-daily controlled release trilayer matrix tablets of nelfinavir to achieve zero-order drug release for sustained plasma concentration. Nelfinavir trilayer matrix tablets were prepared by direct compression method and consisted of middle active layer with different grades of hydroxypropyl methylcellulose (HPMC), PVP (Polyvinyl Pyrrolidine) K-30 and MCC (Micro Crystalline Cellulose). Barrier layers were prepared with Polyox WSR-303, Xanthan gum, microcrystalline cellulose and magnesium stearate. Based on the evaluation parameters, drug dissolution profile and release drug kinetics DF8 were found to be optimized formulation. The developed drug delivery system provided prolonged drug release rates over a period of 24 h. The release profile of the optimized formulation (DF8) was described by the zero-order and best fitted to Higuchi model. FT-IR studies confirmed that there were no chemical interactions between drug and excipients used in the formulation. These results indicate that the approach used could lead to a successful development of a controlled release formulation of nelfinavir in the management of AIDS.


2019 ◽  
Vol 16 (3) ◽  
pp. 347-352 ◽  
Author(s):  
M. Vlachou ◽  
G. Stavrou ◽  
A. Siamidi ◽  
S. Flitouri ◽  
V. Ioannidou ◽  
...  

Background: N-Acetylserotonin (NAS, N-acetyl-5-hydroxytryptamine) is the immediate precursor of the neurohormone melatonin (MT, N-acetyl-5-methoxytryptamine), which regulates sleep and wake cycles. NAS is produced by the N-acetylation of serotonin and is converted to melatonin via the action of Acetylserotonin O-methyltransferase (ASMT). Like melatonin, NAS acts as an agonist on the melatonin receptors MT1, MT2, and MT3. However, as NAS is abundant in specific brain areas, separate from serotonin and melatonin, it may also have discrete central effects. Indicatively, it has been reported that NAS may play a role in the antidepressant effects of Selective Serotonin Reuptake Inhibitors (SSRIs) and Monoamine Oxidase Inhibitors (MAOIs). </P><P> Objective: To decipher the controlled release characteristics of the active substances (NAS and MT) in a quick initial pace, aiming at a satisfactory sleep-onset related anti-depressive profile and prolonged release, thereafter, targeting at coping with poor sleep quality problems. </P><P> Methods: A series of hydrophilic matrix tablets involving as excipients, hydroxypropylmethylcellulose (HPMC) K15M, low viscosity sodium alginate, lactose monohydrate, and polyvinylpyrrolidone (PVP) M.W.: 10.000 and 55.000) was developed and tested at two dissolution media (pH 1.2 and 7.4). </P><P> Results: The results showed that commonly used excipients with different physicochemical properties govern the controlled release of NAS and MT from solid matrix systems. </P><P> Conclusions: We have demonstrated how broadly used excipients affect the in vitro controlled release of NAS and MT from solid pharmaceutical formulations. Currently, we extend our studies on the controlled release of these drugs using various other biopolymers/formulants of different physicochemical characteristics, which will help to highlight the discrete release profiles of NAS and MT.


2020 ◽  
Vol 16 (7) ◽  
pp. 950-959
Author(s):  
Yu Li ◽  
Xiangwen Kong ◽  
Fan Hu

Background: Clarithromycin is widely used for infections of helicobacter pylori. Clarithromycin belongs to polymorphic drug. Crystalline state changes of clarithromycin in sustained release tablets were found. Objective: The aim of this study was to find the influential factor of the crystal transition of clarithromycin in preparation process of sustained-release tablets and to investigate the possible interactions between the clarithromycin and pharmaceutical excipients. Methods and Results: The crystal transition of active pharmaceuticals ingredients from form II to form I in portion in clarithromycin sustained release tablets were confirmed by x-ray powder diffraction. The techniques including differential scanning calorimetry and infrared spectroscopy, x-ray powder diffraction were used for assessing the compatibility between clarithromycin and several excipients as magnesium stearate, lactose, sodium carboxymethyl cellulose, polyvinyl-pyrrolidone K-30 and microcrystalline cellulose. All of these methods showed compatibilities between clarithromycin and the selected excipients. Alcohol prescription simulation was also done, which showed incompatibility between clarithromycin and concentration alcohol. Conclusion: It was confirmed that the reason for the incompatibility of clarithromycin with high concentration of alcohol was crystal transition.


2014 ◽  
Vol 70 (a1) ◽  
pp. C984-C984
Author(s):  
Alessia Bacchi ◽  
Davide Capucci ◽  
Paolo Pelagatti

The objective of this work is to embed liquid or volatile pharmaceuticals inside crystalline materials, in order to tune their delivery properties in medicine or agrochemistry, and to explore new regulatory and intellectual properties issues. Liquid or volatile formulations of active pharmaceutical ingredients (APIs) are intrinsically less stable and durable than solid forms; in fact most drugs are formulated as solid dosage because they tend to be stable, reproducible, and amenable to purification. Most drugs and agrochemicals are manufactured and distributed as crystalline materials, and their action involves the delivery of the active molecule by a solubilization process either in the body or on the environment. However some important compounds for the human health or for the environment occur as liquids at room temperature. The formation of co-crystals has been demonstrated as a means of tuning solubility properties of solid phases, and therefore it is widely investigated by companies and by solid state scientists especially in the fields of pharmaceuticals, agrochemicals, pigments, dyestuffs, foods, and explosives. In spite of this extremely high interest towards co-crystallization as a tool to alter solubility, practically no emphasis has been paid to using it as a means to stabilize volatile or labile or low-melting products. In this work we trap and stabilize volatile and liquid APIs and agrochemicals in crystalline matrices by engineering suitable co-crystals. These new materials alter the physic state of the active ingredients allowing to expand the phase space accessible to manufacturing and delivery. We have defined a benchmark of molecules relevant to human health and environment that have been combined with suitable partners according to the well known methods of crystal engineering in order to obtain cocrystals. The first successful results will be discussed; the Figure shows a cocrystal of propofol, a worldwide use anesthetic.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 804
Author(s):  
Ewelina Juszczyk ◽  
Kamil Kisło ◽  
Paweł Żero ◽  
Ewa Tratkiewicz ◽  
Maciej Wieczorek ◽  
...  

Sustained-release (SR) formulations may appear advantageous in first-in-human (FIH) study of innovative medicines. The newly developed SR matrix tablets require prolonged maintenance of API concentration in plasma and should be reliably assessed for the risk of uncontrolled release of the drug. In the present study, we describe the development of a robust SR matrix tablet with a novel G-protein-coupled receptor 40 (GPR40) agonist for first-in-human studies and introduce a general workflow for the successful development of SR formulations for innovative APIs. The hydrophilic matrix tablets containing the labeled API dose of 5, 30, or 120 mg were evaluated with several methods: standard USP II dissolution, bio-predictive dissolution tests, and the texture and matrix formation analysis. The standard dissolution tests allowed preselection of the prototypes with the targeted dissolution rate, while the subsequent studies in physiologically relevant conditions revealed unwanted and potentially harmful effects, such as dose dumping under an increased mechanical agitation. The developed formulations were exceptionally robust toward the mechanical and physicochemical conditions of the bio-predictive tests and assured a comparable drug delivery rate regardless of the prandial state and dose labeled. In conclusion, the introduced development strategy, when implemented into the development cycle of SR formulations with innovative APIs, may allow not only to reduce the risk of formulation-related failure of phase I clinical trial but also effectively and timely provide safe and reliable medicines for patients in the trial and their further therapy.


1970 ◽  
Vol 2 (2) ◽  
pp. 76-80
Author(s):  
Tajnin Ahmed ◽  
Muhammad Shahidul Islam ◽  
Tasnuva Haque ◽  
Mohammad Abusyed

In the present study sustained release diclofenac sodium matrix tablets were prepared using Kollidon SR polymer. Hydroxypropyl methylcellulose (HPMC 15 cps) and poly ethylene glycol (PEG-600) polymers respectively were used in formulating tablets prepared by direct compression and wet granulation methods. The polymers were used to explore the release pattern of the drug into the dissolution media. The tablets were also prepared in various shapes (caplet oval, round oval and flat oval). A comparatively higher release rate of drug was obtained from the polymer HPMC 15 cps at 10% concentration for directly compressed matrix tablet than those containing 20% of HPMC after a definite period of time. In wet granulation process, 10% PEG-600 containing tablets showed a better release than those containing 20% PEG. The drug release was also found to be sustained in case of wet granulation method than that of the direct compression method. Again the caplet shaped tablets in case of direct compression method showed better release rate of drug than those of the round oval and flat oval shaped tablets. Thus the result of this study shows that the proper selection of the percentage of polymer and the suitable shape of tablet and proper manufacturing method can provide a greater opportunity in designing sustained release dosage forms. Key words: Matrix tablet; release pattern; direct compression; wet granulation; PEG 600; Kollidon SR.DOI: 10.3329/sjps.v2i2.5828Stamford Journal of Pharmaceutical Sciences Vol.2(2) 2009: 76-80


2017 ◽  
Vol 9 (4) ◽  
pp. 92
Author(s):  
Hrishav Das Purkayastha ◽  
Bipul Nath

Objective: The aim of the present investigation was to design and evaluate orally disintegrating tablet (ODT) of Ibuprofen, a NSAID drug used for the treatment of arthritis with a view to improve its oral bioavailability. The focus of the current study was to develop ODT of Ibuprofen using super disintegrants for ease of administration and its physicochemical characterization.Methods: Tablets were made from blends by direct compression method. All the ingredients were passed through mesh no. 80. All the ingredients were co-ground in a pestle motor. The resulting blend was lubricated with magnesium stearate and compressed into tablets using the Cadmach single punch (round shaped, 8 mm thick) machine.Results: Physicals parameters of the prepared tablets like Hardness, Weight variation, Friability, thickness, drug content etc. found within the limits. The disintegration time of prepared ODTs was in the range of 45 to 55 seconds. In vitro dispersion time was found to be 22 to 52 seconds which may be attributed to faster uptake of water due to the porous structure formed by super disintegrants. Short disintegration and faster release of ibuprofen were observed with Cross carmellose sodium as compared to sodium starch glycollate.Conclusion: It is concluded that F3 offered the relatively rapid release of Ibuprofen when compared with other formulations. The increase in the concentrations of super disintegrants may lead to increase in the drug release. The formulation prepared with cross carmellose sodium was offered the relatively rapid release of Ibuprofen when compared with other concentrations of both the super disintegrant. 


Sign in / Sign up

Export Citation Format

Share Document