The Basics of Microbiology

2021 ◽  
Author(s):  
Werner Solbach

Microorganisms constitute 70 percent of the biomass on Planet Earth. Comparatively few species are adapted to colonize human surfaces and form a complex Meta-Organism with manyfold mutual benefits. Occasionally, microorganisms may overcome the barriers of the skin and mucosal surfaces and may multiply locally or in multiple sites inside the body. This process is called infection. Infections can be caused by bacteria, viruses, parasites, helminths, and fungi. Immediately after infection, numerous defense mechanisms of the immune system are activated to combat replication of the microbes. There is a balance between microorganism and human defense mechanisms, which may lead to either asymptomatic infection or result in a wide spectrum of symptoms from mild to severe disease and even death. The most important factors in the diagnosis of infectious diseases are a careful history, physical examination and the appropriate collection of body fluids and tissues. Laboratory diagnosis requires between 2 and 72 hours. Wherever possible, antibiotics should only be used when sufficient evidence of efficacy is available. Then, however, they should be used as early as possible and in high doses. In addition to everyday hygiene measures, vaccination is the most effective measure to prevent infectious diseases.

2018 ◽  
Vol 54 (1) ◽  
pp. 29-36
Author(s):  
Nikola Musiała ◽  
Iga Hołyńska-Iwan ◽  
Dorota Olszewska-Słonina

Cortisol, also called “the” stress hormone is a glucocorticoid secreted by the adrenal cortex. This hormone plays a significant role in maintaining homeostasis, according to the body’s total stress. Cortisol interferes with many organs, affects glucose and fatty acids metabolism and neurotransmitter secretion. Predominantly, cortisol influences the carbohydrate metabolism, stimulating gluconeogenesis in the liver and inhibiting glucose utilization in peripheral tissues. As it is an element “fight or flight” it also stimulates central nervous system and enhances blood flow. To some extent cortisol influences also the renal handling of electrolytes, namely: increasing sodium resorption, and renal excretion of potassium, calcium and phosphates. Through its anti-inflammatory and immunosuppressive character this glucocorticoid modulates the immune system functioning. Cortisol has a circadian rhythm following ACTH (adrenocorticotropic hormone) secretion. Increased cortisol levels are observed physiologically during stress and pathologically in Cushing’s syndrome. Chronic hypercortisolism is harmful or the body, and its effects present an extremely wide spectrum, including insulin resistance, obesity, insomnia and even depression. Thus, laboratory diagnosis of cortisol level is important for the diagnosis, monitoring and evaluate the effectiveness of hypercortisolism treatment.


Author(s):  
HAMID MERCHANT

While we wait for a confirmed drug or a vaccine for CoViD-19, it may be possible to intervene early to prevent the virus causing a severe disease to offer an alternative therapeutic strategy to control the pandemic. The global burden of CoViD-19 on the healthcare system can be significantly reduced by targeting CoViD-19 patients with or without symptoms who are self-isolating at home or in quarantine. If any therapeutic support can be offered to this group of patients that could attenuate the virus within the upper respiratory tract during the early stages of CoViD-19, it can give the body the time to produce enough antibodies to recover naturally from the disease before progressing into severe disease. An early intervention can, therefore, prevent the virus to get down the lower respiratory tract, reduce the number of cases with severe disease involving pneumonia and the need for hospitalisation. This article presents a simple yet holistic treatment strategy that involves inhaling steam supplemented with essential oils possessing wide spectrum antimicrobial properties in conjunction with oropharyngeal sanitisation to all those who are CoViD-19 positive or are under self-isolation due to symptoms. The approach is very simple, cheap, and effective in relieving the symptoms of the disease and is likely to reduce the viral load in the upper respiratory tract that may help recover from the infection. Since there is no vaccine or treatment yet approved to prevent or treat the CoViD-19, the importance of early intervention is invaluable in reducing the global disease burden. In the authors opinion, this strategy may be very effective to nip the infection in the bud before it gets difficult to treat and therefore, have a potential to significantly reduce the CoViD-19 associated hospitalisation.


2021 ◽  
Author(s):  
Heinz-Josef Schmitt

Infectious Diseases result from exposure and contact between a host (human being) and an (uninvited) guest (micro-organism). Given the fact that billions of micro-organisms are in and around us at any time, overall, infectious diseases are comparatively rare; of the millions of different microbial species, only about 300 are known to cause human diseases. Besides exposure and contact, factors on the side of the host (genetic background, environment, underlying diseases and their therapy) and on the side of the micro-organisms (pathogenicity / virulence factors) are necessary to result in an infectious disease. “Colonization” means that a micro-organism can attach on skin or mucous membrane for some time or even indefinitely but does not invade host tissue and does not cause any symptoms. Colonizers may even induce an immune response. “Infection” is defined as a micro-organism invading through skin or mucous membranes the tissue of a host, leading to no disease (“asymptomatic infection”); or symptomatic disease. It is followed by health, disability, or death. Following the infection, microorganisms may persist in the body for a long time or even for life without causing any symptoms, which is called “latent infection”. Infectious diseases may not only be due to pathogenicity factors of a micro-organism, but may also result from (i.) direct destruction of host tissues (e.g., from viral replication); (ii.) the acute host (immune-) response; and from late immune responses resulting in immune-mediated “post-infectious diseases”. Some infections may cause an immune response that is directed against host-tissue, resulting in an “autoimmune-disease”. Given the increasing number of microbes, the increasing number of exposures, and the increasing number and fraction of susceptible/predisposed humans, it is obvious that infectious diseases will increase in the future. Vaccines and vaccination may help solve this problem.


2021 ◽  
Vol 25 (11) ◽  
pp. 1142-1147
Author(s):  
F. K. Permyakov

In the light of modern teachings, parasitic worms are considered not only as causative agents of helminthic diseases, very diverse in etiology and clinical course, but to a large extent also as the primary source of very frequent infectious diseases, as inoculators of microbial flora, as a factor that acts with its poisonous properties on the body, disrupting normal organ function and predisposing it to other diseases and to severe disease. With the development of most infectious diseases, the first role belongs to worms, and the second to bacteria; the course and death of the disease should be considered as the result of the combined destructive work of both. One should not be hypnotized by germs only (Cadeak).


Author(s):  
Shubham Shrivastava ◽  
Sonali Palkar ◽  
Jignesh Shah ◽  
Prajakta Rane ◽  
Sanjay Lalwani ◽  
...  

Patients with SARS-CoV-2 infection have a wide spectrum of clinical presentations, from asymptomatic infection, to mild illness, to severe disease with recovery or fatal outcome. Immune correlates of protection are not yet clear. To understand the association between presence and titers of neutralizing antibodies (NAb) with recovery, we screened 82 COVID-19 patients classified in mild (n = 56) and severe (n = 26) disease groups on different days post onset of disease and 27 viral RNA–positive asymptomatic contacts examined within 1 week of the identification of index cases. Of 26 patients with severe disease, six died and 20 recovered. Anti-SARS-CoV-2 NAb levels in plasma and serum were measured using a plaque reduction neutralization test with live virus. The proportion of asymptomatic and symptomatic infections was 1:7.8 in males and 1:1 in females, with males predominating the severe disease group (21/26, 80.7%). At the time of presentation, NAb positivity and titers were comparable among groups with asymptomatic and mild infections. Notably, patients with severe disease exhibited higher NAb seropositivity and titers (25 of 26, 96.2%; 866 ± 188) than those in the mild category (39 of 56, 69.6%; 199 ± 50, P < 0.0001) and asymptomatic individuals (21 of 27, 77.8%; 124 ± 28, P = 0.0002). Within first 2 weeks of onset, NAb titers were significantly higher among patients with severe disease than those with mild presentation. Our data suggest that irrespective of fatal outcome, progression to disease severity was associated with induction of early and high levels of NAb. In our patient series, clinical disease, severity and fatality were predominantly seen in males. The role of NAbs in immunopathogenesis or protection needs to be defined.


2018 ◽  
Vol 3 (3) ◽  

To determine the immunization status of pediatric patients under age of 5 years visiting pediatric department of tertiary care hospitals in South East Asia. The aim of this study was to appreciate the awareness and implementation of vaccination in pediatric patients who came into pediatric outpatient Department with presenting complain other than routine vaccination. we can also know the count of patients who do not complete their vaccination after birth. we can differentiate between vaccinated and unvaccinated patients and incidence of severe disease in both groups. Immunization is a protective process which makes a person resistant to the harmful diseases prevailing in the community, typically by vaccine administration either orally or intravenously. It is proven for controlling and eliminating many threatening diseases from the community. WHO report that licensed vaccines are available for the prevention of many infectious diseases. After the implementation of effective immunization the rate of many infectious diseases have declined in many countries of the world. South-East Asia is far behind in the immunization coverage. An estimated total coverage is 56%-88% for a fully immunized child, which is variable between countries. Also the coverage is highest for BCG and lowest for Polio.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 753-757
Author(s):  
Anagha Gulhane ◽  
Shamli Hiware

It is the most unreliable truth that anybody can get infected by the COVID-19, and nobody can escape from the danger of getting tainted by the virus. Yet, the line of hope is that anyone and everyone can boost their resistance, thus avoid the risk of getting affected by the illness. The immunity of humans pulls down as they grow older. If their immune system is robust, them falling sick is feeble. If their resistance is weak, them getting ill is sound. Several factors affect the immune system and its ability, including its nourishment. A two-way connection between nutrition, infection and immunity presents. Changes in one part will affect the others part in our body that's the nature's rule. Well defined immune system quality which is present between each life phase may influence the type, generality and the degree of infections. At the same time, low nutrition to the body will decrease the immune function and expose the body to the danger of getting infected by infectious diseases. Different quantity of micronutrients is required for increasing the immunity power of our body. Generally the vitamins A,C,D,E,B2,B6,B12, iron, zinc and selenium.The deficiencies of micronutrients are acknowledged as a global health issue, and also low nutrition makes it prone to establishes the infections in the body.


Author(s):  
Anna Mania ◽  
Katarzyna Mazur-Melewska ◽  
Karol Lubarski ◽  
Jadwiga Kuczma-Napierała ◽  
Justyna Mazurek ◽  
...  

2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Susanna Esposito ◽  
Nicola Cotugno ◽  
Nicola Principi

Abstract Background Although several studies have tried to evaluate the real efficacy of school closure for pandemic control over time, no definitive answer to this question has been given. Moreover, it has not been clarified whether children or teenagers could be considered a problem for SARS-CoV-2 diffusion or, on the contrary, whether parents and school workers play a greater role. The aims of this review are to discuss about children’s safety at school and the better strategies currently able to reduce the risk of SARS-CoV-2 infection at school. Main aim Compared to adults, very few cases of COVID-19 were diagnosed in children, who generally suffered from an asymptomatic infection or a mild disease. Moreover, school closure is systematically associated with the development of problems involving students, teachers and parents, particularly among populations with poor resources. Although several researches have tried to evaluate the real efficacy of school closure for pandemic control over time, no definitive answer to this question has been given. Available findings seem to confirm that to ensure adequate learning and to avoid social and economic problems, schools must remain open, provided that the adults who follow children at home and at school absolutely comply with recommendations for prevention measures and that school facilities can be optimized in order to significantly reduce the spread of infection. In this regard, the universal use of face masks in addition to hand hygiene and safe distancing in schools, at least starting from the age of 6 years, seems extremely useful. Moreover, since the beginning of the COVID-19 outbreak the use of telemedicine to manage suspected SARS-CoV-2-infected individuals in the community has appeared to be an easy and effective measure to solve many paediatric problems and could represent a further support to schools . Conclusions We think that schools must remain open, despite COVID-19 pandemic. However, several problems strictly related to school frequency and reduction of infectious risk must be solved before school attendance can be considered completely safe. A single more in-depth guideline agreed between countries with the same school problems could be very useful in eliminating doubts and fostering the compliance of students, teachers and non-teaching school staff reducing errors and misinterpretations.


Author(s):  
Rohit Jain ◽  
Arun Gopal ◽  
Basant Kumar Pathak ◽  
Sourya Sourabh Mohakuda ◽  
TVSVGK Tilak ◽  
...  

Abstract Context Due to the wide spectrum of clinical illness in coronavirus disease 2019 (COVID-19) patients, it is important to stratify patients into severe and nonsevere categories. Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) have been evaluated rapidly by a few studies worldwide for its association with severe disease, but practically none have been conducted in the Indian population. This study was undertaken to examine the role of NLR and PLR in predicting severe disease in Indian patients. Objectives The objective was to study the association of NLR and PLR observed at the time of admission with maximum disease severity during hospitalization and to study their role in predicting disease severity. Material and Methods A total of 229 COVID-19 patients were admitted at the center during the study period. After applying inclusion and exclusion criteria, 191 patients were included in the study. The demographic, clinical, and laboratory (complete blood count, NLR, and PLR) data of all patients were obtained at the time of admission. Maximum disease severity of all patients was assessed during hospitalization. Statistical Analysis Chi-square and Mann–Whitney U tests were used to assess statistical significance. Receiver operating characteristic curve (ROC) was plotted for NLR and PLR to estimate the cutoff values and sensitivity and specificity using Youden’s index for predicting severe disease. Logistic regression analysis was used to estimate the odds ratios (OR) and 95% confidence intervals. Results Mean NLR and PLR were significantly higher in severe patients (NLR = 7.41; PLR = 204) compared with nonsevere patients (NLR = 3.30; PLR = 121). ROC analysis showed that NLR, in comparison to PLR, had a higher area under the curve (AUC) of 0.779, with a larger OR of 1.237 and cutoff of 4.1, and showed 69% sensitivity and 78% specificity in predicting severe disease. Cut off for PLR was 115.3, which showed 79% sensitivity and 62% specificity in predicting severe disease. Conclusion NLR and PLR, both showing acceptable AUCs, can be used as screening tools to predict disease severity. However, NLR was a better predictor of disease severity.


Sign in / Sign up

Export Citation Format

Share Document