scholarly journals Albendazole and Mebendazole as Anti-Parasitic and Anti-Cancer Agents: an Update

2021 ◽  
Vol 59 (3) ◽  
pp. 189-225
Author(s):  
Jong-Yil Chai ◽  
Bong-Kwang Jung ◽  
Sung-Jong Hong

The use of albendazole and mebendazole, i.e., benzimidazole broad-spectrum anthelmintics, in treatment of parasitic infections, as well as cancers, is briefly reviewed. These drugs are known to block the microtubule systems of parasites and mammalian cells leading to inhibition of glucose uptake and transport and finally cell death. Eventually they exhibit ovicidal, larvicidal, and vermicidal effects on parasites, and tumoricidal effects on hosts. Albendazole and mebendazole are most frequently prescribed for treatment of intestinal nematode infections (ascariasis, hookworm infections, trichuriasis, strongyloidiasis, and enterobiasis) and can also be used for intestinal tapeworm infections (taeniases and hymenolepiasis). However, these drugs also exhibit considerable therapeutic effects against tissue nematode/cestode infections (visceral, ocular, neural, and cutaneous larva migrans, anisakiasis, trichinosis, hepatic and intestinal capillariasis, angiostrongyliasis, gnathostomiasis, gongylonemiasis, thelaziasis, dracunculiasis, cerebral and subcutaneous cysticercosis, and echinococcosis). Albendazole is also used for treatment of filarial infections (lymphatic filariasis, onchocerciasis, loiasis, mansonellosis, and dirofilariasis) alone or in combination with other drugs, such as ivermectin or diethylcarbamazine. Albendazole was tried even for treatment of trematode (fascioliasis, clonorchiasis, opisthorchiasis, and intestinal fluke infections) and protozoan infections (giardiasis, vaginal trichomoniasis, cryptosporidiosis, and microsporidiosis). These drugs are generally safe with few side effects; however, when they are used for prolonged time (>14-28 days) or even only 1 time, liver toxicity and other side reactions may occur. In hookworms, Trichuris trichiura, possibly Ascaris lumbricoides, Wuchereria bancrofti, and Giardia sp., there are emerging issues of drug resistance. It is of particular note that albendazole and mebendazole have been repositioned as promising anti-cancer drugs. These drugs have been shown to be active in vitro and in vivo (animals) against liver, lung, ovary, prostate, colorectal, breast, head and neck cancers, and melanoma. Two clinical reports for albendazole and 2 case reports for mebendazole have revealed promising effects of these drugs in human patients having variable types of cancers. However, because of the toxicity of albendazole, for example, neutropenia due to myelosuppression, if high doses are used for a prolonged time, mebendazole is currently more popularly used than albendazole in anti-cancer clinical trials.


2020 ◽  
Vol 28 (2) ◽  
pp. 360-376 ◽  
Author(s):  
Atefeh Amiri ◽  
Maryam Mahjoubin-Tehran ◽  
Zatollah Asemi ◽  
Alimohammad Shafiee ◽  
Sarah Hajighadimi ◽  
...  

: Cancer and inflammatory disorders are two important public health issues worldwide with significant socio.economic impacts. Despite several efforts, the current therapeutic platforms are associated with severe limitations. Therefore, developing new therapeutic strategies for the treatment of these diseases is a top priority. Besides current therapies, the utilization of natural compounds has emerged as a new horizon for the treatment of cancer and inflammatory disorders as well. Such natural compounds could be used either alone or in combination with the standard cancer therapeutic modalities such as chemotherapy, radiotherapy, and immunotherapy. Resveratrol is a polyphenolic compound that is found in grapes as well as other foods. It has been found that this medicinal agent displays a wide pharmacological spectrum, including anti-cancer, anti-inflammatory, anti-microbial, and antioxidant activities. Recently, clinical and pre-clinical studies have highlighted the anti-cancer and anti-inflammatory effects of resveratrol. Increasing evidence revealed that resveratrol exerts its therapeutic effects by targeting various cellular and molecular mechanisms. Among cellular and molecular targets that are modulated by resveratrol, microRNAs (miRNAs) have appeared as key targets. MiRNAs are short non-coding RNAs that act as epigenetic regulators. These molecules are involved in many processes that are involved in the initiation and progression of cancer and inflammatory disorders. Herein, we summarized various miRNAs that are directly/indirectly influenced by resveratrol in cancer and inflammatory disorders.



2019 ◽  
Vol 19 (15) ◽  
pp. 1219-1254 ◽  
Author(s):  
Abhinav Prasoon Mishra ◽  
Ankit Bajpai ◽  
Awani Kumar Rai

: Nowadays, heterocyclic compounds act as a scaffold and are the backbone of medicinal chemistry. Among all of the heterocyclic scaffolds, 1,4-Dihydropyridine (1,4-DHP) is one of the most important heterocyclic rings that possess prominent therapeutic effects in a very versatile manner and plays an important role in synthetic, medicinal, and bioorganic chemistry. The main aim of the study is to review and encompass relevant studies related to 1,4-DHP and excellent therapeutic benefits of its derivatives. An extensive review of Pubmed-Medline, Embase and Lancet’s published articles was done to find all relevant studies on the activity of 1,4-DHP and its derivatives. 1,4-DHP is a potent Voltage-Gated Calcium Channel (VGCC) antagonist derivative which acts as an anti-hypertensive, anti- anginal, anti-tumor, anti-inflammatory, anti-tubercular, anti-cancer, anti-hyperplasia, anti-mutagenic, anti-dyslipidemic, and anti-ulcer agent. From the inferences of the study, it can be concluded that the basic nucleus, 1,4-DHP which is a voltage-gated calcium ion channel blocker, acts as a base for its derivatives that possess different important therapeutic effects. There is a need of further research of this basic nucleus as it is a multifunctional moiety, on which addition of different groups can yield a better drug for its other activities such as anti-convulsant, anti-oxidant, anti-mutagenic, and anti-microbial. This review would be significant for further researches in the development of several kinds of drugs by representing successful matrix for the medicinal agents.



2020 ◽  
Vol 16 (8) ◽  
pp. 1071-1077
Author(s):  
Aref G. Ghahsare ◽  
Zahra S. Nazifi ◽  
Seyed M.R. Nazifi

: Over the last decades, several heterocyclic derivatives compounds have been synthesized or extracted from natural resources and have been tested for their pharmaceutical activities. Xanthene is one of these heterocyclic derivatives. These compounds consist of an oxygen-containing central heterocyclic structure with two more cyclic structures fused to the central cyclic compound. It has been shown that xanthane derivatives are bioactive compounds with diverse activities such as anti-bacterial, anti-fungal, anti-cancer, and anti-inflammatory as well as therapeutic effects on diabetes and Alzheimer. The anti-cancer activity of such compounds has been one of the main research fields in pharmaceutical chemistry. Due to this diverse biological activity, xanthene core derivatives are still an attractive research field for both academia and industry. This review addresses the current finding on the biological activities of xanthene derivatives and discussed in detail some aspects of their structure-activity relationship (SAR).



2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1633.2-1634
Author(s):  
F. Cosan ◽  
O. M. Gedar

Background:Reactive arthritis (ReA) is defined by 1999 ACR criteria as arthritis preceding a bacterial genitourinary (GUS) or gastrointestinal (GIS) infection in 3 days-6 weeks and evidence of triggering infection. Recently, ReA is classified as SpA and patients who do not fulfill SpA criteria are classified as undifferentiated spondyloarthritis (USpA) according to ASAS/EULAR SpA classification criteria.Objectives:In several case reports which are associated with other infective agents are reported and the definition is extended for some clinicians so that SpA which is occurred after any infection is called as ReA. On the other hand, some researchers still accept the classical definition of ReA. The problem with the heterogeneity of opinions and unstandardized definition of ReA hinders studies about pathogenesis and standardization of treatments. In this study, we aimed to determine the spectrum of the use of the definition of reactive arthritis in publications in PubMed between 2009-2019.Methods:The ReA keyword is searched in PubMed for the years between 2009-2019. 248 different publications have been identified and included in this research. 89 articles, 47 reviews, 108 case reports, 2 guidelines, and 2 editorials reviewed for the definition of ReA.Results:Only 42.7% (106 patients) of these publications meet the classical definition which suggests ReA after only GIS and GUS infections. In 4 (1.6%) of the publications ReA was defined after GIS, GUS and oropharyngeal infections; in 3 (1,2%) of the publications after any bacterial infection; in 9 (3.6%) of the publications after any infection. In 8 (3.2%) of the publications, ReA and USPA was used correspondingly. In 39 (15,7%) of the publications the term agent related, ReA was used without making a general definition for ReA. 79 publications (31,9%) have not defined ReA.According to causative agent and ReA relationship, in 64 (24,6%) general infective agents, in 75 (30,2%) classical agents, in 22 (8,9%) other bacterial agents, in 23 (9,3%) streptococcus, in 10(4%) intravesical BCG, in 6 (2.4%) HIV, in 6 (2.4%) tuberculosis, in 12 (4,8%) clostrudium difficle, in 2 (0.8%) parasites were reported. In 31 (12,5%) of the publications the causative agent for the ReA was unknown, the diagnosis was made clinically.Conclusion:In this study, it is aimed to draw attention terminology intricacy and the need for the standardization of the definition of ReA and USpA. It is clear that to standardize the definition of Rea and USpA is necessary. Between 2009-2019 there are reported cases diagnosed as ReA associated with bacterial infections (especially with Clostridium difficile, streptococcus and tuberculosis infections), and viral infections (by a majority with HIV), and parasitic infections. It is not clear if we need to define them classically or define them as USPA. Another important consideration is the necessity of extended laboratory investigations to find out the real causative agent even if the patient is clinically diagnosed with ReA. The requirement of the differentiation between ReA and USpA must be revealed for therapeutic researches.References:[1]A proposal for the classification of patients for clinical and experimental studies on reactive arthritis. Pacheco-Tena C, Burgos-Vargas R, Vázquez-Mellado J, Cazarín J, Pérez-Díaz JA. J Rheumatol. 1999 Jun;26(6):1338-46.[2]The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Rudwaleit M, van der Heijde D, Landewé R, Akkoc N, Brandt J, Chou CT, Dougados M, Huang F, Gu J, Kirazli Y, et al. Ann Rheum Dis. 2011;70:25–31.Disclosure of Interests:None declared



Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 843
Author(s):  
Balagra Kasim Sumabe ◽  
Synnøve Brandt Ræder ◽  
Lisa Marie Røst ◽  
Animesh Sharma ◽  
Eric S. Donkor ◽  
...  

Drugs targeting DNA and RNA in mammalian cells or viruses can also affect bacteria present in the host and thereby induce the bacterial SOS system. This has the potential to increase mutagenesis and the development of antimicrobial resistance (AMR). Here, we have examined nucleoside analogues (NAs) commonly used in anti-viral and anti-cancer therapies for potential effects on mutagenesis in Escherichia coli, using the rifampicin mutagenicity assay. To further explore the mode of action of the NAs, we applied E. coli deletion mutants, a peptide inhibiting Pol V (APIM-peptide) and metabolome and proteome analyses. Five out of the thirteen NAs examined, including three nucleoside reverse transcriptase inhibitors (NRTIs) and two anti-cancer drugs, increased the mutation frequency in E. coli by more than 25-fold at doses that were within reported plasma concentration range (Pl.CR), but that did not affect bacterial growth. We show that the SOS response is induced and that the increase in mutation frequency is mediated by the TLS polymerase Pol V. Quantitative mass spectrometry-based metabolite profiling did not reveal large changes in nucleoside phosphate or other central carbon metabolite pools, which suggests that the SOS induction is an effect of increased replicative stress. Our results suggest that NAs/NRTIs can contribute to the development of AMR and that drugs inhibiting Pol V can reverse this mutagenesis.



Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 339
Author(s):  
Surinder M. Soond ◽  
Lyudmila V. Savvateeva ◽  
Vladimir A. Makarov ◽  
Neonila V. Gorokhovets ◽  
Paul A. Townsend ◽  
...  

Certain lysosomal cathepsin proteins have come into focus as being good candidates for therapeutic targeting, based on them being over-expressed in a variety of cancers and based on their regulation of the apoptotic pathway. Here, we report novel findings that highlight the ability of cathepsin S expression to be up-regulated under Paclitaxel-stimulatory conditions in kidney cell lines and it being able to cleave the apoptotic p21 BAX protein in intact cells and in vitro. Consistent with this, we demonstrate that this effect can be abrogated in vitro and in mammalian cells under conditions that utilize dominant-inhibitory cathepsin S expression, cathepsin S expression-knockdown and through the activity of a novel peptide inhibitor, CS-PEP1. Moreover, we report a unique role for cathepsin S in that it can cleave a polyubiquitinated-BAX protein intermediate and is a step that may contribute to down-regulating post-translationally-modified levels of BAX protein. Finally, CS-PEP1 may possess promising activity as a potential anti-cancer therapeutic against chemotherapeutic-resistant Renal Clear Cell Carcinoma kidney cancer cells and for combined uses with therapeutics such as Paclitaxel.



Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1178
Author(s):  
Suvesh Munakarmi ◽  
Juna Shrestha ◽  
Hyun-Beak Shin ◽  
Geum-Hwa Lee ◽  
Yeon-Jun Jeong

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide with limited treatment options. Biomarker-based active phenolic flavonoids isolated from medicinal plants might shed some light on potential therapeutics for treating HCC. 3,3′-diindolylmethane (DIM) is a unique biologically active dimer of indole-3-carbinol (I3C), a phytochemical compound derived from Brassica species of cruciferous vegetables—such as broccoli, kale, cabbage, and cauliflower. It has anti-cancer effects on various cancers such as breast cancer, prostate cancer, endometrial cancer, and colon cancer. However, the molecular mechanism of DIM involved in reducing cancer risk and/or enhancing therapy remains unknown. The aim of the present study was to evaluate anti-cancer and therapeutic effects of DIM in human hepatoma cell lines Hep3B and HuhCell proliferation was measured with MTT and trypan blue colony formation assays. Migration, invasion, and apoptosis were measured with Transwell assays and flow cytometry analyses. Reactive oxygen species (ROS) intensity and the loss in mitochondrial membrane potential of Hep3B and Huh7 cells were determined using dihydroethidium (DHE) staining and tetramethylrhodamine ethyl ester dye. Results showed that DIM significantly suppressed HCC cell growth, proliferation, migration, and invasion in a concentration-dependent manner. Furthermore, DIM treatment activated caspase-dependent apoptotic pathway and suppressed epithelial–mesenchymal transition (EMT) via ER stress and unfolded protein response (UPR). Taken together, our results suggest that DIM is a potential anticancer drug for HCC therapy by targeting ER-stress/UPR.



2018 ◽  
Vol 7 (11) ◽  
pp. 418 ◽  
Author(s):  
Jae Shin ◽  
Keum Lee ◽  
I. Lee ◽  
Ji Oh ◽  
Dong Kim ◽  
...  

Systemic capillary leak syndrome (SCLS) is a rare disease characterized by shock caused by capillary hyperpermeability. The disease can occur in cancer patients and effective therapeutic strategies have not been established yet. The aim of the study was to analyze the clinical and laboratory data, treatment modalities, and mortality rate of patients and to identify contributing factors leading to mortality of SCLS in cancer. We searched MEDLINE (inception to July 2018) and of 4612 articles, we identified 62 case reports on SCLS associated with cancer or cancer-related drugs in a total of 53 articles. SCLS was associated with cancer itself in 43.6%, with anti-cancer agents in 51.6% and bone marrow transplantation (BMT) in 4.8%. Among anti-cancer agents, granulocyte-colony stimulating factor (G-CSF) was the most frequently associated drug (14.6%), followed by interleukin (IL)-2 (11.4%). The most common associated malignancies were hematologic (61.3%) with non-Hodgkin lymphoma (22.7%) and multiple myeloma (12.9%) being the leading causes. Common symptoms and signs included dyspnea (27.4%), edema (67.7%), hypotension (32.2%), pleural effusion (29.0%), ascites (22.7%), oliguria (22.7%), and weight gain (21.0%). Patients with SCLS were treated with steroids (59.7%), volume replacement (33.8%), diuretics (24.2%), inotropes (9.6%), methylxanthines (12.8%), β2 agonists (4.8%), while intravenous immunoglobulins (IVIG) were administered in 2 patients (3.2%) only. Among sixteen deaths during follow-up, four were directly attributed to SCLS. Hematologic malignancies were associated with an increased risk for mortality (hazard ratio (HR) 8.820, 95% confidence interval (CI) 1.126–69.063, p = 0.038). Taken together, SCLS can be one important adverse event in cancer patients and careful monitoring of fluid volume is required in the management of SCLS.



2021 ◽  
Author(s):  
◽  
Gareth Adrian Prosser

<p>Nitroaromatic prodrugs are biologically inert compounds that are attractive candidates for anti-cancer therapy by virtue of their ability to be converted to potent DNA alkylating agents by nitroreductase (NTR) enzymes. In gene-directed enzyme-prodrug therapy (GDEPT), NTR-encoding therapeutic transgenes are delivered specifically to tumour cells, whereupon their expression confers host cell sensitivity to subsequent systemic administration of a nitroaromatic prodrug. The most well studied NTR-GDEPT system involves reduction of the aziridinyl dinitrobenzamide prodrug CB1954 by the Escherichia coli NTR NfsB. However, low affinity of this enzyme for CB1954 has so far limited the clinical efficacy of this GDEPT combination. The research described in this thesis has primarily sought to address this limitation through identification and optimisation of novel NTR enzymes with improved nitroaromatic prodrug reductase activity. Efficient assessment of NTR activity from large libraries of candidate enzymes requires a rapid and reliable screening system. An E. coli-based assay was developed to permit indirect assessment of relative rates of prodrug reduction by over-expressed NTRs via measurement of SOS response induction resulting from reduced prodrug-induced DNA damage. Using this assay in concert with other in vitro and in vivo tests, more than 50 native bacterial NTRs of diverse sequence and origin were assessed for their ability to reduce a panel of clinically attractive nitroaromatic prodrugs. Significantly, a number of NTRs were identified, particularly in the family of enzymes homologous to the native E. coli NTR NfsA, which displayed substantially improved activity over NfsB with CB1954 and other nitroaromatic prodrugs as substrates. This work also examined the roles of E. coli DNA damage repair pathways in processing of adducts induced by various nitroaromatic prodrugs. Of particular interest, nucleotide excision repair was found to be important in the processing of DNA lesions caused by 4-, but not 2-nitro group reduction products of CB1954, which suggests that there are some parallels in the mechanisms of CB1954 adduct repair in E. coli and mammalian cells. Finally, a lead NTR candidate, YcnD from Bacillus subtilis, was selected for further activity improvement through site-directed mutagenesis of active site residues. Using SOS screening, a double-site mutant was identified with 2.5-fold improved activity over the wildtype enzyme in metabolism of the novel dinitrobenzamide mustard prodrug PR-104A. In conclusion, novel NTRs with substantially improved nitroaromatic prodrug reducing activity over previously documented enzymes were identified and characterised. These results hold significance not only for the field of NTR-GDEPT, but also for other biotechnological applications in which NTRs are becoming increasingly significant, including developmental studies, antibiotic discovery and bioremediation. Furthermore, the in vitro assays developed in this study have potential utility in the discovery and evolution of other GDEPT-relevant enzymes whose prodrug metabolism is associated with genotoxicity.</p>



2021 ◽  
Author(s):  
◽  
Gareth Adrian Prosser

<p>Nitroaromatic prodrugs are biologically inert compounds that are attractive candidates for anti-cancer therapy by virtue of their ability to be converted to potent DNA alkylating agents by nitroreductase (NTR) enzymes. In gene-directed enzyme-prodrug therapy (GDEPT), NTR-encoding therapeutic transgenes are delivered specifically to tumour cells, whereupon their expression confers host cell sensitivity to subsequent systemic administration of a nitroaromatic prodrug. The most well studied NTR-GDEPT system involves reduction of the aziridinyl dinitrobenzamide prodrug CB1954 by the Escherichia coli NTR NfsB. However, low affinity of this enzyme for CB1954 has so far limited the clinical efficacy of this GDEPT combination. The research described in this thesis has primarily sought to address this limitation through identification and optimisation of novel NTR enzymes with improved nitroaromatic prodrug reductase activity. Efficient assessment of NTR activity from large libraries of candidate enzymes requires a rapid and reliable screening system. An E. coli-based assay was developed to permit indirect assessment of relative rates of prodrug reduction by over-expressed NTRs via measurement of SOS response induction resulting from reduced prodrug-induced DNA damage. Using this assay in concert with other in vitro and in vivo tests, more than 50 native bacterial NTRs of diverse sequence and origin were assessed for their ability to reduce a panel of clinically attractive nitroaromatic prodrugs. Significantly, a number of NTRs were identified, particularly in the family of enzymes homologous to the native E. coli NTR NfsA, which displayed substantially improved activity over NfsB with CB1954 and other nitroaromatic prodrugs as substrates. This work also examined the roles of E. coli DNA damage repair pathways in processing of adducts induced by various nitroaromatic prodrugs. Of particular interest, nucleotide excision repair was found to be important in the processing of DNA lesions caused by 4-, but not 2-nitro group reduction products of CB1954, which suggests that there are some parallels in the mechanisms of CB1954 adduct repair in E. coli and mammalian cells. Finally, a lead NTR candidate, YcnD from Bacillus subtilis, was selected for further activity improvement through site-directed mutagenesis of active site residues. Using SOS screening, a double-site mutant was identified with 2.5-fold improved activity over the wildtype enzyme in metabolism of the novel dinitrobenzamide mustard prodrug PR-104A. In conclusion, novel NTRs with substantially improved nitroaromatic prodrug reducing activity over previously documented enzymes were identified and characterised. These results hold significance not only for the field of NTR-GDEPT, but also for other biotechnological applications in which NTRs are becoming increasingly significant, including developmental studies, antibiotic discovery and bioremediation. Furthermore, the in vitro assays developed in this study have potential utility in the discovery and evolution of other GDEPT-relevant enzymes whose prodrug metabolism is associated with genotoxicity.</p>



Sign in / Sign up

Export Citation Format

Share Document