Quantifying the Impact of Structural Fibers on the Performance of Concrete Overlays on Asphalt

2021 ◽  
Author(s):  
Thomas Burnham ◽  
Michael Wallace ◽  
Manik Barman

Concrete overlays on asphalt pavement, also known as whitetopping, are growing in popularity as an option for the rehabilitation of distressed asphalt pavements. The performance of whitetoppings over the past several decades has shown that under heavy and frequent traffic loads, they can be susceptible to panel migration and faulting due to the lack of tie bars and dowel bars within the thin cross sections. One mitigation method to reduce panel migration and faulting is the inclusion of structural fibers into the concrete mix. While structural fibers have anecdotally been shown to contribute toward better performance in whitetoppings, few studies have quantified the benefits provided by the typical dosage of fibers used in recent specifications. Two sets of similarly designed experimental test sections constructed at the MnROAD test facility in 2004 and 2013, have provided the opportunity to evaluate and quantify the impact of structural fibers on whitetopping performance. This comparison of the performance between plain concrete and fiber-reinforced concrete overlay test sections includes analysis of material properties of the mixes, the difference in response to environmental and traffic loads, typical distresses, and ride quality. Based on the results of the analysis, recommendations were made with regards to whether the types and dosages of structural fibers used in the test sections made a sufficient impact on performance.

2021 ◽  
Vol 872 ◽  
pp. 1-6
Author(s):  
Khaleel H. Younis ◽  
Firas F. Jirjees ◽  
Hozan K. Yaba ◽  
Shelan M. Maruf

This study is an experimental study aims to examine the effect of utilization of straight, and low cost steel fibers on the impact resistance of concrete. The impact resistance of steel fiber reinforced concrete (SFRC) was assessed using drop weight test as per ACI committee 544. The steel fibers were randomly dispersed in concrete during mixing. Five mixes made with steel fibers dosages of 0% (control mix), 0.5%, 1%, 1.25% and 1.5% by volume of concrete were examined in the study. The results show that mixes containing steel fibers show better impact resistance than plain concrete (control Mix). The results also indicate that increasing the dosage of fiber increases the impact resistance of concrete but up to a certain content of fibers. The maximum increase was recorded at steel fiber dosage of 1.25% by volume of concrete. Also the patterns of failure of the concrete specimens show that fibers are very effective in increasing the concrete toughness which enhance the ductility of concrete and delays the crack initiation.


2014 ◽  
Vol 584-586 ◽  
pp. 1630-1634
Author(s):  
Xin Hua Cai ◽  
Zhen He ◽  
Wen Liu

PVA fiber reinforced cement-based composite is a new high-performance cement-based composite material, which usually manufactured with PVA short fibers (does not exceed 2.5% vol.) and cement-based matrix. It has a significant strain-hardening characteristic and excellent crack controlling ability. Its ultimate tensile strain is up to 3% and crack width is not exceed 100μm. PVA fiber reinforced cement-based composite can be utilized to fabricated high energy absorption opponents, such as protective shield, seismic joint, impact-resistant site, etc. In this paper, the basic mechanical properties of PVA fiber reinforced cement-based composite has been tested and verified first. Then the impact resistance of PVA reinforced cement-based composite has been investigated via drop weight impact test, and compared with ones of plain concrete and steel fiber reinforced concrete with the same strength grade. Through analyzing the test results, it is concluded that PVA reinforced cement-based composite’s impact energy absorption is 48 times than plain concrete, and 9 times than steel fiber reinforced concrete respectively. The impact numbers of PVA reinforced cement-based composite is slightly lower than steel fiber reinforced concrete, but its impact absorption energy after initial cracking is 15 times than steel fiber reinforced concrete. In conclusion, PVA reinforced cement-based composite is an excellent impact material.


2012 ◽  
Vol 430-432 ◽  
pp. 277-280
Author(s):  
Yan Ming Wang ◽  
Wen Wen Yang ◽  
Yong Sun ◽  
Ke Liu

The fiber reinforced concrete with flexible fiber and rigid fiber respectively added into C30 plain concrete, curing under standard condition for 28 days, was used for impact resistance performance experiment. The flexible fiber is American Dura fiber and Chinese nylon fiber. The rigid fiber is Chinese steel fiber. The impact resistance property was evaluated by initial cracking times, final cracking times and impact toughness. The result shows that the impact toughness of steel fiber concrete, Dura fiber concrete and nylon fiber concrete is respectively 15.1, 3.4 and 2.7 times of the plain concrete. The fiber reinforced concrete improves the impact resistance property compared with the plain concrete. The impact resistance of rigid steel fiber reinforced concrete is increased greatly.


2003 ◽  
Vol 30 (4) ◽  
pp. 696-703
Author(s):  
Hernán de Solminihac ◽  
Marcelo G Bustos ◽  
Aníbal L Altamira ◽  
Juan Pablo Covarrubias

Concrete is widely used as a construction material in pavements by public and private agencies that administer highway networks because of its high durability and capacity to resist large traffic loads and very rigorous climates. Nevertheless, these agencies have to estimate the evolution of pavement performance to plan and optimize the application of adequate maintenance activities, allowing the pavement to be maintained at an optimum service level throughout its lifetime. Predictive distress models of the incremental type, that is, models capable of predicting annual increments of different distress indicators in the pavement, could be very useful tools in the implementation of maintenance plans, with minimal need for previous data, especially with regard to information on cumulative traffic loads. This paper offers incremental models for distress prediction in jointed plain concrete pavements, related to joint problems such as faulting and spalling, which clearly affect the pavement ride quality. The equations obtained allow for not only the calculation of distress predictions in analyzing road maintenance policies, but also the adjustment of the original designs of these pavements, to minimize the occurrence and magnitude of distress problems.Key words: concrete pavements, distress models, pavement performance, pavement management systems.


Author(s):  
Kevin Alland ◽  
Julie M. Vandenbossche ◽  
John W. DeSantis ◽  
Mark B. Snyder ◽  
Lev Khazanovich

Bonded concrete overlays of asphalt pavements (BCOA) consist of a concrete overlay placed on an existing asphalt or composite pavement. This technique is intended as a cost-effective rehabilitation solution for marginally distressed in-service asphalt or composite pavements. BCOA with panel sizes between 4.5 ft and 8.5 ft have become popular as they reduce curling stresses while keeping the longitudinal joints out of the wheelpath. The BCOA-ME (mechanistic empirical) design procedure and Pavement ME short jointed plain concrete pavement (SJPCP) module can both be used to design BCOA with mid-size panels. However, these design procedures differ in the assumptions used to develop the mechanistic computational model, fatigue models used to predict failure, treatment of environmental conditions, estimate of asphalt stiffness, consideration of structural fibers, the application of traffic loading, and the calibration process. This results in the procedures producing different overlay thicknesses and predicted distresses. The strengths and limitations of each procedure are evaluated and comparisons are made between the design thicknesses obtained from them.


2020 ◽  
Vol 10 (21) ◽  
pp. 7737
Author(s):  
Yating Zhang ◽  
Zhiyi Huang

Cross-tensioned concrete pavement can reduce transverse joints and cracks and improve the durability of the pavement, and the decrease in slab thickness can be achieved without damaging the performance of the pavement. However, the corrosion of the steel can cause serious damage to the pavement structure, resulting in higher maintenance costs and shorter service life. Basalt fiber-reinforced polymer (BFRP) has been proven to be an effective alternative in both jointed plain concrete pavement (JPCP) and continuously reinforced concrete pavement (CRCP) due to its lightweight and corrosion-resistant properties. In this paper, a systematic theoretical method for determining the prestress loss of BFRP tendons in cross-tensioned concrete pavement was proposed, with the impact of the slab width and distribution angle of the prestressed tendon on the prestress loss being studied and compared to the results of traditional steel strands. Results showed that the proportion of the prestress loss due to anchorage deformation and prestress retraction in the prestressing stage rose with the increase in distribution angle and the decrease in slab width, while the prestress loss during the in-service stage was a constant value for both BFRP tendons and steel strands. The prestress loss of BFRP tendons was far lower than that of steel strands in both prestressing stage and in-service stage for a given slab width (3 m, 4.5 m, 9.0 m, 12.75 m) and distribution angle (20°, 25°, 30°, 35°, 40°, 45°), and the difference ranged from 6.4% to 16%, signifying the feasibility of BFRP tendons in cross-tensioned concrete pavement. Overall, the smaller the slab width, the greater the difference of the prestress loss between BFRP tendons and steel strands.


2019 ◽  
pp. 109-123
Author(s):  
I. E. Limonov ◽  
M. V. Nesena

The purpose of this study is to evaluate the impact of public investment programs on the socio-economic development of territories. As a case, the federal target programs for the development of regions and investment programs of the financial development institution — Vnesheconombank, designed to solve the problems of regional development are considered. The impact of the public interventions were evaluated by the “difference in differences” method using Bayesian modeling. The results of the evaluation suggest the positive impact of federal target programs on the total factor productivity of regions and on innovation; and that regional investment programs of Vnesheconombank are improving the export activity. All of the investments considered are likely to have contributed to the reduction of unemployment, but their implementation has been accompanied by an increase in social inequality.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2016 ◽  
pp. 3564-3575 ◽  
Author(s):  
Ara Sergey Avetisyan

The efficiency of virtual cross sections method and MELS (Magneto Elastic Layered Systems) hypotheses application is shown on model problem about distribution of wave field in thin surface layers of waveguide when plane wave signal is propagating in it. The impact of surface non-smoothness on characteristics of propagation of high-frequency horizontally polarized wave signal in isotropic elastic half-space is studied. It is shown that the non-smoothness leads to strong distortion of the wave signal over the waveguide thickness and along wave signal propagation direction as well.  Numerical comparative analysis of change in amplitude and phase characteristics of obtained wave fields against roughness of weakly inhomogeneous surface of homogeneous elastic half-space surface is done by classical method and by proposed approach for different kind of non-smoothness.


2020 ◽  
Vol 4 (2) ◽  
pp. 150
Author(s):  
Farzana Sharmin Pamela Islam

As 21st century is the era of modern technologies with different aspects, it offers us to make the best use of them. After tape recorder and overhead projector (OHP), multimedia has become an important part of language classroom facilities for its unique and effective application in delivering and learning lesson. Although in many parts of Bangladesh, a South Asian developing country, where English enjoys the status of a foreign language, the use of multimedia in teaching and learning is viewed as a matter of luxury. However, nowadays the usefulness and the necessity of it are well recognized by the academics as well as the government. The study aims to focus on the difference between a traditional classroom void of multimedia and multimedia equipped classrooms at university level by explaining how multimedia support the students with enhanced opportunity to interact with diverse texts that give them more in-depth comprehension of the subject. It also focuses on audio-visual advantage of multimedia on the students’ English language learning. The study has followed a qualitative method to get an in-depth understanding of the impact of using multimedia in an English language classroom at tertiary level. For this purpose, the data have been collected from two different sources. Firstly, from students’ written response to  an open ended question as to their comparative experience of learning  lessons with and without multimedia facilities; and secondly, through  observation of English language classes at a private university of Dhaka, the capital city of Bangladesh. The discussion of the study is limited to  the use of multimedia in English language classroom using cartoons, images and music with a view to enhance students’ skills in academic writing, critical analysis of image and critical appreciation of music. For this purpose, cartoons in English language, images from Google and music from You Tube have got focused discussion in this paper.


Sign in / Sign up

Export Citation Format

Share Document