scholarly journals Microbiota and Parkinson's disease (overview)

2020 ◽  
pp. 10-14
Author(s):  
R. R. Tyutina ◽  
A. A. Pilipovich ◽  
V. L. Golubev ◽  
Al. B. Danilov

Parkinson's disease (PD) is characterized by both motor (hypokinesia, resting tremor, rigidity, postural instability) and non-motor symptoms. It is known that some non-motor manifestations, such as disturbances in smell, sleep, depression, gastrointestinal dysfunction, and others, may precede motor symptoms. Replenishment of dopamine deficiency, which, as known, develops in PD due to the death of dopaminergic neurons of the substantia nigra, makes it possible to influence most motor and some non-motor symptoms of parkinsonism, however many non-motor manifestations remain resistant to this therapy. In addition, it has only a symptomatic effect, and the pathogenetic treatment of PD is currently unavailable, which is primarily due to insufficient knowledge about the etiology and mechanisms of the development of the disease. In particular, it has already been established that alpha synuclein (a pathomorphological marker of PD) begins to be deposited in the intestinal wall, in the enteric nervous system (ENS) long before it appears in neurons of the substantia nigra. Understanding the mechanism of interaction along the axis “intestine – brain”, the role of intestinal wall dysfunction in the onset and development of PD can lead to the development of new directions in the treatment of this disease. Today, the role of microbiota, in particular the intestinal microbiota, in the functioning of the human body, its various systems, including the nervous system, is widely studied in the world. The influence of its imbalance on the activation of inflammatory reactions in the ENS and the possibility of the subsequent development of PD are considered. This review provides some evidence supporting the hypothesis that PD can be initiated in the gut. In addition, the possibilities of influencing the course of BP using pre-, pro-, syn- and metabiotics are considered.

2021 ◽  
Author(s):  
Sara Konstantin Nissen ◽  
Kristine Farmen ◽  
Mikkel Carstensen ◽  
Claudia Schulte ◽  
David Goldeck ◽  
...  

AbstractBackgroundAlpha-synuclein aggregates and accumulation are associated with immune activation and neurodegeneration in Parkinson’s disease. The immune activation is not only dependent on the brain-resident microglial cells but also involves peripheral immune cells, such as mononuclear phagocytes including monocytes and dendritic cells, found in the blood as well as infiltrated into the brain. Understanding the involvement of the peripheral immune component in Parkinson’s disease is essential for the development of immunomodulatory treatment, which might modify disease progression. We aimed to study the profile of circulating mononuclear phagocytes in early- and late-stage Parkinson’s disease by analyzing surface-expressed molecules related to phagocytosis, alpha-synuclein sensing, and tissue-migration.MethodsMulti-color flow cytometry on peripheral mononuclear cells from cross-sectional samples of 80 gender-balance individuals with early- and late-stage sporadic Parkinson’s disease, and 29 controls, as well as longitudinal samples from seven patients and one control. Cells were delineated into natural killer cells, monocyte subtypes, and dendritic cells with cell frequencies and surface marker expressions compared between patients and controls, and correlated with standardized clinical motor and non-motor scores.ResultsOverall, we found elevated frequencies and surface levels of markers related to migration (CCR2, CD11b) and phagocytosis (CD163) particularly on the elevated classical and intermediate monocytes in patients with Parkinson’s disease for less than five years. This corresponded to a decrease of non-classical monocytes and dendritic cells. We observed an increased HLA-DR expression late in disease and sexual-dimorphism with TLR-4 expression decreased in women with PD but not in males. The disease-associated immune changes on TLR4, CCR2, and CD11b were correlated with non-motor symptoms such as olfaction or cognition. While many alterations were normalized at late disease stage, other changes remained, such as the increased HLA-DR and CD163 expressions.ConclusionsOur data highlight a role for peripheral CD163+ and migration-competent classical monocytes in Parkinson’s disease. The study further suggests that the peripheral immune system is dynamically altered in Parkinson’s disease stages and directly related to both non-motor symptoms and the sex-bias of the disease.


2019 ◽  
Author(s):  
LM Butkovich ◽  
MC Houser ◽  
T Chalermpalanupap ◽  
KA Porter-Stransky ◽  
AF Iannitelli ◽  
...  

AbstractDegeneration of locus coeruleus (LC) neurons and dysregulation of noradrenergic signaling are ubiquitous features of Parkinson’s disease (PD). The LC is among the first brain regions affected by α-synuclein (asyn) pathology, yet how asyn affects these neurons remains unclear. LC-derived norepinephrine (NE) can stimulate neuroprotective mechanisms and modulate immune cells, while dysregulation of NE neurotransmission may exacerbate disease progression, particularly non-motor symptoms, and contribute to the chronic neuroinflammation associated with PD pathology. Although transgenic mice overexpressing asyn have previously been developed, transgene expression is usually driven by pan-neuronal promoters and thus has not been selectively targeted to LC neurons. Here we report a novel transgenic mouse expressing human wild-type asyn under control of the noradrenergic-specific dopamine β-hydroxylase promoter. These mice developed oligomeric and conformation-specific asyn in LC neurons, alterations in hippocampal and LC microglial abundance, upregulated GFAP expression, degeneration of LC fibers, decreased striatal dopamine (DA) metabolism, and age-dependent behaviors reminiscent of non-motor symptoms of PD that were rescued by adrenergic receptor antagonists. These mice provide novel insights into how asyn pathology affects LC neurons and how central noradrenergic dysfunction may contribute to early PD pathophysiology.Significance statementα-synuclein (asyn) pathology and loss of neurons in the locus coeruleus (LC) are two of the most ubiquitous neuropathologic features of Parkinson’s disease (PD). Dysregulated NE neurotransmission is associated with the non-motor symptoms of PD including sleep disturbances, emotional changes such as anxiety and depression, and cognitive decline. Importantly, loss of central NE may contribute to the chronic inflammation in, and progression of, PD. We have generated a novel transgenic mouse expressing human asyn in LC neurons to investigate how increased asyn expression affects the function of the central noradrenergic transmission and associated behaviors. We report cytotoxic effects of oligomeric and conformation-specific asyn, astrogliosis, LC fiber degeneration, disruptions in striatal dopamine metabolism, and age-dependent alterations in non-motor behaviors without inclusions.


2022 ◽  
Author(s):  
Min Hyung Seo ◽  
Sujung Yeo

Abstract Parkinson’s disease (PD) is known as the second most common neurodegenerative disease, which is caused by destruction of dopaminergic neurons in the substantia nigra (SN) of the brain; however, the reason for the death of dopaminergic neurons remains unclear. An increase in α-synuclein (α-syn) is considered an important factor in the pathogenesis of PD. In the current study, we investigated the association between PD and serine/arginine-rich protein specific kinase 3 (Srpk3) in MPTP-induced parkinsonism mice model and in SH-SY5Y cells treated with MPP+. Srpk3 expression was significantly downregulated, while tyrosine hydroxylase (TH) decreased and α-synuclein (α-syn) increased after 4 weeks of MPTP intoxication treatment. Dopaminergic cell reduction and α-syn increase were demonstrated by inhibiting Srpk3 expression by siRNA in SH-SY5Y cells. Moreover, a decrease in Srpk3 expression upon siRNA treatment promoted dopaminergic cell reduction and α-syn increase in SH-SY5Y cells treated with MPP+. These results suggest that the decrease in Srpk3 expression due to Srpk3 siRNA caused both a decrease in TH and an increase in α-syn. This raises new possibilities for studying how Srpk3 controls dopaminergic cells and α-syn expression, which may be related to the pathogenesis of PD. Our results provide an avenue for understanding the role of Srpk3 during dopaminergic cell loss and α-syn increase in the SN. Furthermore, this study could support a therapeutic possibility for PD in that the maintenance of Srpk3 expression inhibited dopaminergic cell reduction.


2020 ◽  
Vol 26 (4) ◽  
pp. 322-329
Author(s):  
Sevgi Uğur Mutluay ◽  
Elif Çınar ◽  
Gül Yalçın Çakmaklı ◽  
Ayşe Ulusoy ◽  
Bülent Elibol ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Goichi Beck ◽  
Yumiko Hori ◽  
Yoshito Hayashi ◽  
Eiichi Morii ◽  
Tetsuo Takehara ◽  
...  

Background. Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor and nonmotor impairments, including constipation. Lewy bodies and neurites, the pathological hallmarks of PD, are found in the enteric nervous system (ENS) as well as the central nervous system. Constipation is a well-documented premotor symptom in PD, and recent reports have demonstrated Lewy pathology in gastrointestinal (GI) tissues of PD patients prior to the onset of motor symptoms. Objective. In the present study, we assessed Lewy pathology in the GI tracts of seven PD patients who had undergone a gastrectomy, gastric polypectomy, or colonic polypectomy prior to the onset of motor symptoms in order to assess whether the presence of pathological αSyn in the ENS could be a predictor for PD. Methods. GI tissue samples were collected from control patients and patients with premotor PD. Immunohistochemistry was performed using primary antibodies against α-synuclein (αSyn) and phosphorylated αSyn (pαSyn), after which Lewy pathology in each sample was assessed. Results. In all control and premotor PD patients, accumulation of αSyn was observed in the myenteric plexus in both the stomach and colon. In 82% (18/22) of control patients, mild-to-moderate accumulation of αSyn was observed in the submucosal plexus. However, there was no deposition of pαSyn in the ENS of control patients. In patients with premotor PD, abundant accumulation of αSyn was observed in the myenteric plexus, similar to control patients. On the other hand, pαSyn-positive aggregates were also observed in the nerve fibers in the muscularis propria in all examined patients with premotor PD (100%, 3/3), while the deposition of pαSyn in the submucosal plexus was only observed in one patient (14%, 1/7). Conclusion. Our results suggest that the detection of pαSyn, but not αSyn, especially in the muscularis propria of GI tracts, could be a sensitive prodromal biomarker for PD.


2019 ◽  
Vol 41 (3) ◽  
pp. 661-667 ◽  
Author(s):  
Ting Li ◽  
Jing Shi ◽  
Bin Qin ◽  
Dongsheng Fan ◽  
Na Liu ◽  
...  

AbstractAs a noninvasive technique, transcranial sonography (TCS) of substantia nigra (SN) has gradually showed its effectiveness not only in diagnosis but also in understanding clinical features of Parkinson’s Disease (PD). This study aimed to further evaluate TCS for clinical diagnosis of PD, and to explore the association between sonographic manifestations and visual hallucinations (VH). A total of 226 subjects including 141 PD patients and 85 controls were recruited. All participants received TCS. A series of rating scales to evaluate motor and non-motor symptoms were performed in PD patients. Results showed that 172 subjects were successfully assessed by TCS. The area of SN was greater in PD patients than that in controls (P < 0.001). As receiver-operating characteristic (ROC) curve analysis showed, the best cutoff value for the larger SN echogenicity size was 23.5 mm2 (sensitivity 70.3%, specificity 77.0%). Patients with VH had larger SN area (P = 0.019), as well as higher Non-Motor Symptoms Scale (NMSS) scores (P = 0.018). Moreover, binary logistic regression analysis indicated that SN hyperechogenicity (odds ratio = 4.227, P = 0.012) and NMSS scores (odds ratio = 0.027, P = 0.042) could be the independent predictors for VH. In conclusion, TCS can be used as an auxiliary diagnostic tool for Parkinson’s disease. Increased SN echogenicity is correlated with VH in Parkinson’s disease, possibly because the brain stem is involved in the mechanism in the onset of VH. Further studies are needed to confirm these findings.


2021 ◽  
Vol 22 (6) ◽  
pp. 3038
Author(s):  
Javier Navarro-Zaragoza ◽  
Lorena Cuenca-Bermejo ◽  
Pilar Almela ◽  
María-Luisa Laorden ◽  
María-Trinidad Herrero

Small heat shock proteins (HSPs), such as HSP27, are ubiquitously expressed molecular chaperones and are essential for cellular homeostasis. The major functions of HSP27 include chaperoning misfolded or unfolded polypeptides and protecting cells from toxic stress. Dysregulation of stress proteins is associated with many human diseases including neurodegenerative diseases, such as Parkinson’s disease (PD). PD is characterized by the presence of aggregates of α-synuclein in the central and peripheral nervous system, which induces the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and in the autonomic nervous system. Autonomic dysfunction is an important non-motor phenotype of PD, which includes cardiovascular dysregulation, among others. Nowadays, the therapies for PD focus on dopamine (DA) replacement. However, certain non-motor symptoms with a great impact on quality of life do not respond to dopaminergic drugs; therefore, the development and testing of new treatments for non-motor symptoms of PD remain a priority. Since small HSP27 was shown to prevent α-synuclein aggregation and cytotoxicity, this protein might constitute a suitable target to prevent or delay the motor and non-motor symptoms of PD. In the first part of our review, we focus on the cardiovascular dysregulation observed in PD patients. In the second part, we present data on the possible role of HSP27 in preventing the accumulation of amyloid fibrils and aggregated forms of α-synuclein. We also include our own studies, highlighting the possible protective cardiac effects induced by L-DOPA treatment through the enhancement of HSP27 levels and activity.


2021 ◽  
Vol 5 (2) ◽  
pp. 061-068
Author(s):  
Dutta Rajib

Parkinson’s disease (PD) is thought to be the most common neurodegenerative disease with movement disorder. The key motor symptoms are rigidity, tremor, akinesis/hypokinesia/bradykinesia, and postural instability. However, in our day-to-day clinical practice we tend to see several other symptoms which may be motor or non-motor. Non-motor symptoms (NMS) are quite common and debilitating. The pathological hallmarks of PD are loss of dopaminergic neurons in the substantia nigra pars compacta (SNPc) and accumulation of unfolded or misfolded alpha-synuclein. Diagnosis of PD is difficult in the pre-motor stage. Late diagnosis renders a substantial loss of dopaminergic neurons in SNPc and spread of disease in other parts of the brain. This may manifest as either full blown symptoms requiring multiple medications or may even lead to life threatening condition due to lack of early diagnostic tools and techniques. Biomarkers are required to diagnose PD at a very early stage when prevention is possible. Hence, we see a lot of interest among researchers involved in finding a biomarker specific to the disease. Biomarkers may be clinical, image based, genetic, and biochemical. Cerebrospinal fluid (CSF) and serum markers which may correlate with disease pathophysiology are of great significance. One such molecule which recently gained a lot of attention is neuron-specific enolase (NSE). The main aim of this paper is to highlight the role of NSE in predicting neurodegeneration and neuroinflammation ultimately reflecting damage of brain cells in PD.


Sign in / Sign up

Export Citation Format

Share Document