scholarly journals Physiology, Coagulation Cascade: Inherited Disorders, and the Molecular Phenomenon of Alterations in Hemostasis

2021 ◽  
Vol 2 (2) ◽  
2019 ◽  
Author(s):  
Eric M. Campion ◽  
Mitchell J. Cohen

There are multiple congenital and acquired disorders of coagulation that may result in unplanned bleeding or clotting. These disorders can result in an increase in morbidity and mortality to surgical patients. Unexpected bleeding during and after surgery can be prevented by having an adequate understandings of these entities and by being aware of the available treatment options. In addition to awareness of bleeding disorders, it is important to recognize the risks associated with disorders predisposing patients to clotting, or thrombophilias. This review discusses the major inherited disorders of the coagulation cascade resulting in bleeding or clotting tendencies in relation to surgical patients. von Willebrand Disease (vWD), hemophilia A, hemophilia B, hemophilia C, acute coagulopathy of trauma, disseminated intravascular coagulation (DIC), uremic bleeding, bleeding in cirrhosis, clotting disorders, and acquired thrombophilias are covered.  This review 4 figures, 25 tables, and 47 references. Keywords: Thrombosis, bleeding, coagulation, disseminated intravascular coagulation, factor deficiency, factor V Leiden, von Willebrand disease, thrombophilia, clotting, hemophilia


Author(s):  
K. A. Holbrook

The dermal-epidermal junction (DEJ), or basement membrane rone, is the boundary between the epithelial and mesenchymal compartments of the skin; epidermal and fibroblastic cells in these two regions collaborate to synthesire its components. Ultrastructural studies (TEM and SEM) have defined a series of planes or layers (basal epidermal, lamina lucida, lamina densa, sublamina densa) and the morphology and density of attachment structures (hemidesmosomes, anchoring filaments, anchoring fibrils and anchoring plaques) in this region of normal skin. Change in structure of the DEJ provides information about the history of the tissue; reduplication of the lamina densa, for example, indicates a site of cell detachment or migration, or remodelling that accompanies repair of focal damage. In normal skin the structure of the DEJ is stable; in pathologic conditions it can be compromised by the congenital absence of certain structures or antigens (e.g., in the inherited disorders, epidermolysis bullosa [EB]) or by enzymatic degradation (e.g., in tumor invasion). Dissolution of the DEJ can also occur normally during the formation of epidermal appendages (e.g., hair follicles) and as melanocytes and Langerhans cells migrate into the epidermis during development.Biochemical and immunohisto/cytochemical studies have identified more than 20 molecules at the DEJ. These include well known matrix molecules (e.g., types IV and V collagen, laminin and fibronectin) and skin-specific antigens. The latter have been identified by autoantibodies or specific polyclonal or monoclonal antibodies raised against the skin, cultured cells and other epithelia. Some of the molecules of the DEJ are are present in basement membrane zones of many epithelia and thus are considered ubiquitous components (type IV, V, laminin, fibronectin, nidogen, entactin, HSPG, LDA-1, CSP [3B3]). All of them (that have been investigated in developing skin) appear ontogenetically as early as human embryonic tissue can be obtained and their expression is typically normal in patients with EB. The known properties of many of these molecules (particularly the matrix components) suggest functions they might impart to the DEJ: support of an epithelium (type IV collagen), regulation of permeability (heparan sulfate proteoglycan) or facilitation of cell attachment (fibronectin) and movement (laminin). Another group of matrix components and antigens of the DEJ includes molecules that are skin-specific or characteristic of stratified squamous epithelia (type VII collagen=LH 7:2 antigen, bullous pemphigoid antigen, AA3, GB3, KF-1,19-DEJ-1, epidermolysis bullosa acquisita antigen [EBA], AF-1 and AF-2, cicatricial pemphigoid antigen [CPA]) . These molecules are expressed in the DEJ later in development than the first group of molecules, in conjunction with the morphologic appearance of the structure they represent. Their appearance is also coordinated with specific developmental events (e.g., epidermal stratification) and the expression of molecules of differentiation in the epidermis and dermis. One or more of them is typically absent or reduced in expression in the skin of patients with heritable disorders affecting this region. There is no apparent correlation between the location of molecules in the DEJ and the stability of their expression.


2010 ◽  
Vol 30 (04) ◽  
pp. 212-216 ◽  
Author(s):  
R. Jovic ◽  
M. Hollenstein ◽  
P. Degiacomi ◽  
M. Gautschi ◽  
A. Ferrández ◽  
...  

SummaryThe activated partial thromboplastin time test (aPTT) represents one of the most commonly used diagnostic tools in order to monitor patients undergoing heparin therapy. Expression of aPTT coagulation time in seconds represents common practice in order to evaluate the integrity of the coagulation cascade. The prolongation of the aPTT thus can indicate whether or not the heparin level is likely to be within therapeutic range. Unfortunately aPTT results are highly variable depending on patient properties, manufacturer, different reagents and instruments among others but most importantly aPTT’s dose response curve to heparin often lacks linearity. Furthermore, aPTT assays are insensitive to drugs such as, for example, low molecular weight heparin (LMWH) and direct factor Xa (FXa) inhibitors among others. On the other hand, the protrombinase-induced clotting time assay (PiCT®) has been show to be a reliable functional assay sensitive to all heparinoids as well as direct thrombin inhibitors (DTIs). So far, the commercially available PiCT assay (Pefakit®-PiCT®, DSM Nutritional Products Ltd. Branch Pentapharm, Basel, Switzerland) is designed to express results in terms of units with the help of specific calibrators, while aPTT results are most commonly expressed as coagulation time in seconds. In this report, we describe the results of a pilot study indicating that the Pefakit PiCT UC assay is superior to the aPTT for the efficient monitoring of patients undergoing UFH therapy; it is also suitable to determine and quantitate the effect of LMWH therapy. This indicates a distinct benefit when using this new approach over the use of aPPT for heparin monitoring.


2020 ◽  
Vol 1 (2) ◽  
pp. 38-44
Author(s):  
Irina V. Vakhlova ◽  
Anastasia D. Kazachina ◽  
Olga A. Beglyanina

Background. In the international clinical practice there have been occasional reports of phenylketonuria (PKU) and cystic fibrosis (CF) found simultaneously in the same patient. Both PKU and CF are the inherited disorders characterized by autosomal recessive type of inheritance. Currently the combination of two or more inherited disorders in one patient is considered to be a clinical rarity.Case description. This is a clinical case of two genetic disorders, CF and PKU, combined in a 5-year old patient who had been followed up since birth. Owing to implementation of neonatal screening for inherited and congenital diseases into clinical practice, during the first month of life the infant was diagnosed with CF (diagnostically significant elevation of immunoreactive trypsin [IRT] at the initial [163.2 ng/mL] and repeat testing on day 21 of life [138.7 ng/mL]) and PKU (phenylalanine [PA] level 15.9 mg/dL). Both disorders have been confirmed by genetic tests, i.e., homozygous DelF508 mutation was found in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, and P281L mutation in the phenylalanine hydroxylase (PAH) gene was also present in homozygous state. Child’s parents strictly adhered to dietary and treatment recommendations. By the age of 5 years the child developed symptoms of neurological disorder and disorder of the respiratory system, cognitive impairment and delay in speech development, subclinical epileptiform activity with high risk of epilepsy, and chronic inflammation of the respiratory tract.Conclusion. This case report demonstrates the important role of neonatal screening in early diagnosis and timely start of therapy, and underscores the importance of continuous medication in such genetic disorders as CF and PKU. On the whole, such approach brings about a relative preservation of functioning of the most affected organs and systems. By the age of 5 years the child does not form bronchiectases, shows no signs of chronic hypoxia, nutritional deficiency or pronounced neurologic deficit, and is at low risk for the development of autism spectrum disorder. At the same time, the larger scale and longer-term observations are required in order to make the unequivocal conclusions about the prognosis of these diseases under conditions of modern-day medical follow-up.


2020 ◽  
Vol 54 (5) ◽  
pp. 15-22
Author(s):  
I.M. Larina ◽  
◽  
D.N. Kashirina ◽  
K.S. Kireev ◽  
A.I. Grigoriev ◽  
...  

We performed the first ever comparative analysis of modifications in the proteome, ionogram and some other blood plasma biochemical indices of 18 male cosmonauts (44 ± 6 years of age) before and after maiden or repeated long-term missions to the Russian segment of the International space station (ISS RS). Levels of proteins, substrates and ions as well as chemical components were measured using the LC-MS-based proteomics and routine biochemical techniques. A total of 256 to 281 indices were investigated with the methods of descriptive statistic, regression analysis, and access to bioinformatics resources. It was shown that blood indices recovery from the maiden and repeated missions reflects changes in the body systems and goes at a various speed. The results of measurements made prior to launch and on day 7 after landing are dependent on the number of missions. The bioinformatics techniques showed that after maiden missions both the mediator proteins of alkaline phosphatase (AP) and blood proteins with reliably changing concentrations are associated with the bio-processes including stress, metabolism and DNA reparation, apoptosis, catabolism and proteolysis. During early re-adaptation from repeated missions the AP level was affected by bone remodeling, phosphorylation, angiogenesis and coagulation cascade suggesting a distinct and urgent trigger of the processes of bone structure and mineralization.


2020 ◽  
Vol 26 (18) ◽  
pp. 2109-2115 ◽  
Author(s):  
Mikhail A. Panteleev ◽  
Anna A. Andreeva ◽  
Alexey I. Lobanov

Discovery and selection of the potential targets are some of the important issues in pharmacology. Even when all the reactions and the proteins in a biological network are known, how does one choose the optimal target? Here, we review and discuss the application of the computational methods to address this problem using the blood coagulation cascade as an example. The problem of correct antithrombotic targeting is critical for this system because, although several anticoagulants are currently available, all of them are associated with bleeding risks. The advantages and the drawbacks of different sensitivity analysis strategies are considered, focusing on the approaches that emphasize: 1) the functional modularity and the multi-tasking nature of this biological network; and 2) the need to normalize hemostasis during the anticoagulation therapy rather than completely suppress it. To illustrate this effect, we show the possibility of the differential regulation of lag time and endogenous thrombin potential in the thrombin generation. These methods allow to identify the elements in the blood coagulation cascade that may serve as the targets for the differential regulation of this system.


2019 ◽  
Vol 25 (29) ◽  
pp. 3112-3127 ◽  
Author(s):  
Alessandra Vecchié ◽  
Fabrizio Montecucco ◽  
Federico Carbone ◽  
Franco Dallegri ◽  
Aldo Bonaventura

Background: Diabetes is increasing over time, mainly driven by obesity, aging, and urbanization. Classical macro- and microvascular complications represent the final result of a complex interplay involving atherosclerosis at all stages. Methods: In this review, we aim at focusing on current updates in the pathophysiology of vascular disease in diabetes and discussing how new therapies might influence the management of these patients at high cardiovascular risk. Diabetes shows accelerated atherosclerosis with a larger inflammatory cell infiltrate, thus favoring the development of heart failure. ‘Diabetic cardiomyopathy’ perfectly describes a specific ischemia- and hypertension- independent entity due to diabetes-related metabolic alterations on myocardial function. Moreover, platelets from subjects with diabetes display a typical hyperreactivity explaining the stronger adhesion, activation, and aggregation. Additionally, diabetes provokes an exaggerated stimulation of the endothelium, with an increased release of reactive oxygen species and a reduced release of nitric oxide, both key elements of the endothelial dysfunction. Also, the coagulation cascade and leukocytes activate contributing to this pro-thrombotic environment. Neutrophils have been recently recognized to play a pivotal role by releasing neutrophil extracellular traps. Finally, microparticles from platelets, neutrophils or monocytes are detrimental effectors on the vessel wall and are involved both in vascular dysfunction and in thrombotic complications. Conclusion: In light of these findings, the therapeutic management of diabetes needs to be mostly focused on limiting the progression of complications by targeting precise pathophysiological mechanisms rather than the mere glycemic control, which failed to markedly reduce the risk for macrovascular complications and mortality.


Sign in / Sign up

Export Citation Format

Share Document