scholarly journals A simple setup miniaturization with multiple benefits for Green Chemistry in nanoparticle synthesis

Author(s):  
Jette Mathiesen ◽  
Susan Cooper ◽  
Andy Anker ◽  
Tiffany Kinnibrugh ◽  
Kirsten Jensen ◽  
...  

The development of nanomaterials often relies on wet-chemical syntheses performed in reflux-setups using round-bottom-flasks. An alternative approach to synthesize nanomaterials is here presented that uses glass tubes designed for NMR analysis as reactors. This approach uses less solvent, uses less energy, generates less waste, provides safer conditions, is less prone to contamination and is compatible with high throughput screening. The benefits of this approach are illustrated by an in breadth study with the synthesis of gold, iridium, osmium and copper sulfide nanoparticles.

2021 ◽  
Author(s):  
Jette Mathiesen ◽  
Susan Cooper ◽  
Andy Anker ◽  
Tiffany Kinnibrugh ◽  
Kirsten Jensen ◽  
...  

The development of nanomaterials often relies on wet-chemical syntheses performed in reflux setups using round-bottom-flasks. An alternative approach to synthesise nanomaterials is presented that uses glass tubes designed for NMR analysis as reactors. It uses less solvent, generates less waste, provides safer conditions, is less prone to contamination and is compatible with high throughput screening.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Maximilian O. Besenhard ◽  
Dai Jiang ◽  
Quentin A. Pankhurst ◽  
Paul Southern ◽  
Spyridon Damilos ◽  
...  

A highly sensitive magnetometer for flow chemistry to characterise magnetic nanoparticles in solution, in situ and in real-time is presented. This facilitates continuous quality control and high-throughput screening of magnetic nanoparticle syntheses.


2021 ◽  
Author(s):  
Alex Olivares-Molina ◽  
Brenda Parker

Brown macroalgae are an attractive third-generation feedstock of natural products, in order to design green chemistry-compliant processes and reduce the use of organic solvents in bioactive product extraction, aqueous two-phase systems (ATPS) was applied. This research aimed to develop a high-throughput screening (HTS) to recover polyphenols from Ascophyllum nodosum using ATPS. In total, 384 different 2-phase systems were assessed using an automated liquid-handling system to evaluate polyphenol recovery using a model system of phloroglucinol to establish an optimal 2-phase system for polyphenol partitioning. Various ratios of PEG:potassium phosphate solutions were explored to evaluate partitioning of polyphenols via a scale-down approach. Scale-down selected system showed a recovery of phloroglucinol of 62.9±12.0%, this system was used for scale-up trials. Scale-up studies confirmed that the HTS method was able to recover polyphenols with a 54.8±14.2% in the phloroglucinol model system. When the optimised ATPS system was tested with a polyphenol extract, 93.62±8.24% recovery was observed. When ATPS was applied to a fucoidan and alginate biorefinery residue, 88.40±4.59% polyphenol was recovered. These findings confirm that ATPS is a valuable addition to the bioprocess toolkit for sustainable extraction of natural products from macroalgae in a multiproduct biorefinery approach.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
L Hingorani ◽  
NP Seeram ◽  
B Ebersole

Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
K Georgousaki ◽  
N DePedro ◽  
AM Chinchilla ◽  
N Aliagiannis ◽  
F Vicente ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
LS Espindola ◽  
RG Dusi ◽  
KR Gustafson ◽  
J McMahon ◽  
JA Beutler

2014 ◽  
Author(s):  
Clair Cochrane ◽  
Halil Ruso ◽  
Anthony Hope ◽  
Rosemary G Clarke ◽  
Christopher Barratt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document