scholarly journals Modeling and Control for Emission Management in Hybrid Electric Commercial Vehicles

2022 ◽  
Author(s):  
Olov Holmer
Author(s):  
Ronan Crosnier ◽  
Jean-Franc¸ois Hetet

This article presents a causal, forward looking approach for the hybrid electric vehicle where the typical performance engine map representation has been modified. The need for a more physical model of the power stroke process has been fulfilled with “the filling and emptying” method. The thermodynamic states in the intake and exhaust systems are calculated, while the in-cylinder process is still based on the engine fuel consumption map as a calibrated data. Comparisons with the conventional model are established, most important is the response of the engine torque under the load demand. This notion of an “available” torque is taken into account by the energy management strategy. Changes on the distribution of energy flow in order to meet the required torque at the wheel are observed and influence of this modelisation on the fuel consumption over various driving cycles is evaluated.


2014 ◽  
Vol 543-547 ◽  
pp. 1246-1249
Author(s):  
Liang Zhang ◽  
Bin Jiao ◽  
Lei Li

The modeling method and control strategy for series hybrid electric vehicles were presented in this paper. Firstly, the system structure and operation principles are discussed systematically; and then a control strategy is proposed based on the modeling of powertrain. Control strategy focus on the multi-modes switch logic and power distribution. In the last part of this paper, the simulation made in MATLAB/Simulink was introduced, which results indicate that the model and control strategy are correct.


2005 ◽  
Author(s):  
Bo-Chiuan Chen ◽  
Yuh-Yih Wu ◽  
Ying-Da Huang ◽  
Chi-Nan Yeh

1999 ◽  
Author(s):  
Veronika Gospodareva ◽  
William Hamel ◽  
Claudell Hatmaker ◽  
Jeffrey Hodgson ◽  
Stephen Jesse ◽  
...  

Abstract The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville (UTK) offers courses addressing the simulation, modeling, and control system design of hybrid electric vehicles (HEV). In the Spring of 1999 such a course was conducted to support the UTK FutureCar Challenge entry for 1999. The vehicle modeled is a Dual-configuration Hybrid Electric Vehicle (DHEV) which uses a planetary power-split device similar to the Toyota Hybrid System used in the Toyota “Prius”. The goals of the course included the development of a real-time simulator that could incorporate actual vehicle control hardware in the simulator loop. This “control-hardware-in-the-loop” (CHIL) configuration was used for simulation, control system design, and troubleshooting. This approach allows the simulation of normal vehicle operating conditions as well as emergency fault handling situations in which it may not be desirable to subject the actual prototype vehicle to a given test condition. Additionally, it is possible to do a great deal of control system testing and development without an operating vehicle.


Author(s):  
Flah Aymen ◽  
Habib Kraiem ◽  
Lassaad Sbita

The transportation systems have become more electrified, and the major countries of the world program using electric scooters, electric bicycles, electric trains, electric buses, and electric vehicles for their transport. The traditional energy resource stocks are still decreasing rapidly, which makes the world afraid about the future of the transport sector. Therefore, several international restrictions and laws have limited using this kind of energy in relation to the transport sector by encouraging public transport and making a high taxes for the highly energy-consuming cars. The robustness and the efficiency of transportation systems designs are related especially to the internal electric motor and to the battery capacity used. From the other side, the energy management problem presents a serious factor that must be optimized in order to guarantee the overall efficiency and rentability. This chapter explores the modeling and control of hybrid electric vehicles.


Sign in / Sign up

Export Citation Format

Share Document