scholarly journals Knockdown of Genes Involved in Transcription and Splicing Reveals Novel RNAi Targets for Pest Control

2021 ◽  
Vol 3 ◽  
Author(s):  
Eileen Knorr ◽  
Andre Billion ◽  
Elane Fishilevich ◽  
Linda Tenbusch ◽  
Meghan L. F. Frey ◽  
...  

RNA interference (RNAi) is a promising next generation technology for the development of species-specific pest management. The key to successful RNAi based-plant protection is dependent in part on data-driven target gene selection, a challenging task due to the absence of laboratory strains and the seasonality of most pest species. In this study, we aimed to identify novel target genes by performing a knowledge-based approach in order to expand the spectrum of known potent RNAi targets. Recently, the protein-coding genes ncm, Rop, RPII-140, and dre4 have been identified as sensitive RNAi targets for pest control. Based on these potent RNAi targets, we constructed an interaction network and analyzed a selection of 30 genes in the model beetle Tribolium castaneum via injection of dsRNA synthesized by in vitro transcription. Nineteen of these targets induced significant mortality of over 70%, including six that caused 100% lethality. Orthologs of active T. castaneum RNAi targets were verified in the economically important coleopteran pests Diabrotica virgifera virgifera and Brassicogethes aeneus. Knockdown of D. v. virgifera genes coding for transcription factor Spt5, Spt6, and RNA polymerase II subunit RPII-33 caused over 90% mortality in larval feeding assays. Injection of dsRNA constructs targeting RPII-215 or the pre-mRNA-processing factor Prp19 into adult B. aeneus resulted in high lethality rates of 93 and 87%, respectively. In summary, the demonstrated knowledge-based approaches increased the probability of identifying novel lethal RNAi target genes from 2% (whole genome) to 36% (transcription- and splicing-related genes). In addition, performing RNAi pre-screening in a model insect increased also the probability of the identification essential genes in the difficult-to-work-with pest species D. v. virgifera and B. aeneus.

1995 ◽  
Vol 15 (12) ◽  
pp. 7091-7097 ◽  
Author(s):  
B Peers ◽  
S Sharma ◽  
T Johnson ◽  
M Kamps ◽  
M Montminy

A number of homeodomain proteins have been shown to regulate cellular development by stimulating the transcription of specific target genes. In contrast to their distinct activities in vivo, however, most homeodomain proteins bind indiscriminately to potential target sites in vitro, suggesting the involvement of cofactors which specify target site selection. One such cofactor, termed extradenticle, has been shown to influence segmental morphogenesis in Drosophila melanogaster by binding cooperatively with certain homeodomain proteins to target regulatory elements. Here we demonstrate that STF-1, an orphan homeodomain protein required for pancreatic development in mammals, binds cooperatively to DNA with Pbx, the mammalian homolog of extradenticle. Cooperative binding with Pbx requires a pentapeptide motif (FPWMK) which is well conserved among a large subset of homeodomain proteins. The FPMWK motif is not sufficient to confer Pbx cooperativity on other homeodomain proteins, however; the N-terminal arm of the STF-1 homeodomain is also essential. As cooperative binding with Pbx occurs on only a subset of potential STF-1 target sites, our results suggest that Pbx may specify target gene selection in the developing pancreas by forming heterodimeric complexes with STF-1.


2004 ◽  
Vol 279 (50) ◽  
pp. 52183-52190 ◽  
Author(s):  
Pascale Jackers ◽  
Gabor Szalai ◽  
Omar Moussa ◽  
Dennis K. Watson

Megakaryopoiesis is the process by which hematopoietic stem cells in the bone marrow differentiate into mature megakaryocytes. The expression of megakaryocytic genes during megakaryopoiesis is controlled by specific transcription factors. Fli-1 and GATA-1 transcription factors are required for development of megakaryocytes and promoter analysis has definedin vitrofunctional binding sites for these factors in several megakaryocytic genes, includingGPIIb,GPIX, andC-MPL. Herein, we utilize chromatin immunoprecipitation to examine the presence of Ets-1, Fli-1, and GATA-1 on these promotersin vivo. Fli-1 and Ets-1 occupy the promoters ofGPIIb,GPIX, andC-MPLgenes in both Meg-01 and CMK11-5 cells. WhereasGPIIbis expressed in both Meg-01 and CMK11-5 cells,GPIXandC-MPLare only expressed in the more differentiated CMK11–5 cells. Thus,in vivooccupancy by an Ets factor is not sufficient to promote transcription of some megakaryocytic genes. GATA-1 and Fli-1 are both expressed in CMK11-5 cells and co-occupy theGPIXandC-MPLpromoters. Transcription of all three megakaryocytic genes is correlated with the presence of acetylated histone H3 and phosphorylated RNA polymerase II on their promoters. We also show that exogenous expression of GATA-1 in Meg-01 cells leads to the expression of endogenous c-mpl and gpIX mRNA. WhereasGPIIb,GPIX, andC-MPLare direct target genes for Fli-1, both Fli-1 and GATA-1 are required for formation of an active transcriptional complex on theC-MPLandGPIXpromotersin vivo. In contrast,GPIIbexpression appears to be independent of GATA-1 in Meg-01 cells.


2016 ◽  
Author(s):  
Goncalo C. Vilhais-Neto ◽  
Marjorie Fournier ◽  
Jean-Luc Plassat ◽  
Mihaela E. Sardiu ◽  
Anita Saraf ◽  
...  

Bilateral symmetry is a striking feature of the vertebrate body plan organization. Vertebral precursors, called somites, provide one of the best illustrations of embryonic symmetry. Maintenance of somitogenesis symmetry requires Retinoic acid (RA) and its coactivator Rere/Atrophin2. Here, using a proteomic approach we identify a protein complex, containing Wdr5, Hdac1, Hdac2 and Rere (named WHHERE), which regulates RA signalling and controls embryonic symmetry. We demonstrate that Wdr5, Hdac1 and Hdac2 are required for RA signalling in vitro and in vivo. Mouse mutants for Wdr5 and Hdac1 exhibit asymmetrical somite formation characteristic of RA-deficiency. We also identify the Rere-binding histone methyltransferase Ehmt2/G9a, as a RA coactivator controlling somite symmetry. Upon RA treatment, WHHERE and Ehmt2 become enriched at RA target genes to promote RNA Polymerase II recruitment. Our work identifies a novel protein complex linking key epigenetic regulators acting in the molecular control of embryonic bilateral symmetry.


2020 ◽  
Author(s):  
Clément Immarigeon ◽  
Sandra Bernat-Fabre ◽  
Emmanuelle Guillou ◽  
Alexis Verger ◽  
Elodie Prince ◽  
...  

AbstractThe evolutionarily-conserved multiprotein Mediator complex (MED) serves as an interface between DNA-bound transcription factors (TFs) and the RNA Polymerase II machinery. It has been proposed that each TF interacts with a dedicated MED subunit to induce specific transcriptional responses. However, binary MED subunit - TF partnerships are probably oversimplified models. Using Drosophila TFs of the GATA family - Pannier (Pnr) and Serpent (Srp) - as a model, we have previously established GATA cofactor evolutionarily-conserved function for the Med1 Mediator subunit. Here, we show that another subunit, Med19, is required for GATA-dependent gene expression and interacts physically with Pnr and Srp in cellulo, in vivo and in vitro through their conserved C-zinc finger (ZF), indicating general GATA co-activator functions. Interestingly, Med19 is critical for the regulation of all tested GATA target genes which is not the case for Med1, suggesting differential use of MED subunits by GATAs depending on the target gene. Lastly, despite their presumed distant position within the MED middle module, both subunits interact physically. In conclusion, our data shed new light first on the MED complex, engaging several subunits to mediate TF-driven transcriptional responses and second, on GATA TFs, showing that ZF DNA-binding domain also serves for transactivation.


Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 677-686
Author(s):  
Jeffrey A Pederson ◽  
James W LaFollette ◽  
Cornelius Gross ◽  
Alexey Veraksa ◽  
William McGinnis ◽  
...  

Abstract Homeotic genes of Drosophila melanogaster encode transcription factors that specify segment identity by activating the appropriate set of target genes required to produce segment-specific characteristics. Advances in understanding target gene selection have been hampered by the lack of genes known to be directly regulated by the HOM-C proteins. Here we present evidence that the gene 1.28 is likely to be a direct target of Deformed in the maxillary segment. We identified a 664-bp Deformed Response Element (1.28 DRE) that directs maxillary-specific expression of a reporter gene in transgenic embryos. The 1.28 DRE contains in vitro binding sites for Deformed and DEAF-1. The Deformed binding sites do not have the consensus sequence for cooperative binding with the cofactor Extradenticle, and we do not detect cooperative binding to these sites, though we cannot rule out an independent role for Extradenticle. Removing the four Deformed binding sites renders the 1.28 DRE inactive in vivo, demonstrating that these sites are necessary for activation of this enhancer element, and supporting the proposition that 1.28 is activated by Deformed. We show that the DEAF-1 binding region is not required for enhancer function. Comparisons of the 1.28 DRE with other known Deformed-responsive enhancers indicate that there are multiple ways to construct Deformed Response Elements.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1465 ◽  
Author(s):  
Christiaan J. Stavast ◽  
Stefan J. Erkeland

MicroRNAs (miRNAs) are critical regulators of gene expression. As miRNAs are frequently deregulated in many human diseases, including cancer and immunological disorders, it is important to understand their biological functions. Typically, miRNA-encoding genes are transcribed by RNA Polymerase II and generate primary transcripts that are processed by RNase III-endonucleases DROSHA and DICER into small RNAs of approximately 21 nucleotides. All miRNAs are loaded into Argonaute proteins in the RNA-induced silencing complex (RISC) and act as post-transcriptional regulators by binding to the 3′- untranslated region (UTR) of mRNAs. This seed-dependent miRNA binding inhibits the translation and/or promotes the degradation of mRNA targets. Surprisingly, recent data presents evidence for a target-mediated decay mechanism that controls the level of specific miRNAs. In addition, several non-canonical miRNA-containing genes have been recently described and unexpected functions of miRNAs have been identified. For instance, several miRNAs are located in the nucleus, where they are involved in the transcriptional activation or silencing of target genes. These epigenetic modifiers are recruited by RISC and guided by miRNAs to specific loci in the genome. Here, we will review non-canonical aspects of miRNA biology, including novel regulators of miRNA expression and functions of miRNAs in the nucleus.


2020 ◽  
Vol 117 (41) ◽  
pp. 25486-25493 ◽  
Author(s):  
Jun Xu ◽  
Wei Wang ◽  
Liang Xu ◽  
Jia-Yu Chen ◽  
Jenny Chong ◽  
...  

While loss-of-function mutations in Cockayne syndrome group B protein (CSB) cause neurological diseases, this unique member of the SWI2/SNF2 family of chromatin remodelers has been broadly implicated in transcription elongation and transcription-coupled DNA damage repair, yet its mechanism remains largely elusive. Here, we use a reconstituted in vitro transcription system with purified polymerase II (Pol II) and Rad26, a yeast ortholog of CSB, to study the role of CSB in transcription elongation through nucleosome barriers. We show that CSB forms a stable complex with Pol II and acts as an ATP-dependent processivity factor that helps Pol II across a nucleosome barrier. This noncanonical mechanism is distinct from the canonical modes of chromatin remodelers that directly engage and remodel nucleosomes or transcription elongation factors that facilitate Pol II nucleosome bypass without hydrolyzing ATP. We propose a model where CSB facilitates gene expression by helping Pol II bypass chromatin obstacles while maintaining their structures.


1999 ◽  
Vol 19 (1) ◽  
pp. 495-504 ◽  
Author(s):  
John Sok ◽  
Xiao-Zhong Wang ◽  
Nikoleta Batchvarova ◽  
Masahiko Kuroda ◽  
Heather Harding ◽  
...  

ABSTRACT CHOP (also called GADD153) is a stress-inducible nuclear protein that dimerizes with members of the C/EBP family of transcription factors and was initially identified as an inhibitor of C/EBP binding to classic C/EBP target genes. Subsequent experiments suggested a role for CHOP-C/EBP heterodimers in positively regulating gene expression; however, direct evidence that this is the case has so far not been uncovered. Here we describe the identification of a positively regulated direct CHOP-C/EBP target gene, that encoding murine carbonic anhydrase VI (CA-VI). The stress-inducible form of the gene is expressed from an internal promoter and encodes a novel intracellular form of what is normally a secreted protein. Stress-induced expression of CA-VI is both CHOP and C/EBPβ dependent in that it does not occur in cells deficient in either gene. A CHOP-responsive element was mapped to the inducibleCA-VI promoter, and in vitro footprinting revealed binding of CHOP-C/EBP heterodimers to that site. Rescue of CA-VIexpression in c/ebpβ−/− cells by exogenous C/EBPβ and a shorter, normally inhibitory isoform of the protein known as LIP suggests that the role of the C/EBP partner is limited to targeting the CHOP-containing heterodimer to the response element and points to a preeminent role for CHOP in CA-VI induction during stress.


2005 ◽  
Vol 83 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Benoit Coulombe ◽  
Marie-France Langelier

High resolution X-ray crystal structures of multisubunit RNA polymerases (RNAP) have contributed to our understanding of transcriptional mechanisms. They also provided a powerful guide for the design of experiments aimed at further characterizing the molecular stages of the transcription reaction. Our laboratory used tandem-affinity peptide purification in native conditions to isolate human RNAP II variants that had site-specific mutations in structural elements located strategically within the enzyme's catalytic center. Both in vitro and in vivo analyses of these mutants revealed novel features of the catalytic mechanisms involving this enzyme.Key words: RNA polymerase II, transcriptional mechanisms, mutational analysis, mRNA synthesis.


Sign in / Sign up

Export Citation Format

Share Document