scholarly journals Global Dynamics of a Delayed Fractional-Order Viral Infection Model With Latently Infected Cells

Author(s):  
C. Rajivganthi ◽  
F. A. Rihan

In this paper, we propose a fractional-order viral infection model, which includes latent infection, a Holling type II response function, and a time-delay representing viral production. Based on the characteristic equations for the model, certain sufficient conditions guarantee local asymptotic stability of infection-free and interior steady states. Whenever the time-delay crosses its critical value (threshold parameter), a Hopf bifurcation occurs. Furthermore, we use LaSalle’s invariance principle and Lyapunov functions to examine global stability for infection-free and interior steady states. Our results are illustrated by numerical simulations.

2021 ◽  
Vol 11 (21) ◽  
pp. 10484
Author(s):  
Chinnathambi Rajivganthi ◽  
Fathalla A. Rihan

In this paper, we study the global dynamics of a stochastic viral infection model with humoral immunity and Holling type II response functions. The existence and uniqueness of non-negative global solutions are derived. Stationary ergodic distribution of positive solutions is investigated. The solution fluctuates around the equilibrium of the deterministic case, resulting in the disease persisting stochastically. The extinction conditions are also determined. To verify the accuracy of the results, numerical simulations were carried out using the Euler–Maruyama scheme. White noise’s intensity plays a key role in treating viral infectious diseases. The small intensity of white noises can maintain the existence of a stationary distribution, while the large intensity of white noises is beneficial to the extinction of the virus.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Huaqin Peng ◽  
Zhiming Guo

A viral infection model with saturated incidence rate and viral infection with delay is derived and analyzed; the incidence rate is assumed to be a specific nonlinear formβxv/(1+αv). The existence and uniqueness of equilibrium are proved. The basic reproductive numberR0is given. The model is divided into two cases: with or without delay. In each case, by constructing Lyapunov functionals, necessary and sufficient conditions are given to ensure the global stability of the models.


2018 ◽  
Vol 24 (1) ◽  
pp. 47-72 ◽  
Author(s):  
Yuji Li ◽  
Rui Xu ◽  
Jiazhe Lin

In this paper, we propose an HBV viral infection model with continuous age structure and nonlinear incidence rate. Asymptotic smoothness of the semi-flow generated by the model is studied. Then we caculate the basic reproduction number and prove that it is a sharp threshold determining whether the infection dies out or not. We give a rigorous mathematical analysis on uniform persistence by reformulating the system as a system of Volterra integral equations. The global dynamics of the model is established by using suitable Lyapunov functionals and LaSalle's invariance principle. We further investigate the global behaviors of the HBV viral infection model with saturation incidence through numerical simulations.


SeMA Journal ◽  
2012 ◽  
Vol 60 (1) ◽  
pp. 27-50 ◽  
Author(s):  
Yukihiko Nakata ◽  
Yoichi Enatsu ◽  
Yoshiaki Muroya

Sign in / Sign up

Export Citation Format

Share Document