scholarly journals Engineered Polyploid Yeast Strains Enable Efficient Xylose Utilization and Ethanol Production in Corn Hydrolysates

Author(s):  
Lulu Liu ◽  
Mingjie Jin ◽  
Mingtao Huang ◽  
Yixuan Zhu ◽  
Wenjie Yuan ◽  
...  

The reported haploid Saccharomyces cerevisiae strain F106 can utilize xylose for ethanol production. After a series of XR and/or XDH mutations were introduced into F106, the XR-K270R mutant was found to outperform others. The corresponding haploid, diploid, and triploid strains were then constructed and their fermentation performance was compared. Strains F106-KR and the diploid produced an ethanol yield of 0.45 and 0.48 g/g total sugars, respectively, in simulated corn hydrolysates within 36 h. Using non-detoxicated corncob hydrolysate as the substrate, the ethanol yield with the triploid was approximately sevenfold than that of the diploid at 40°C. After a comprehensive evaluation of growth on corn stover hydrolysates pretreated with diluted acid or alkali and different substrate concentrations, ethanol yields of the triploid strain were consistently higher than those of the diploid using acid-pretreatment. These results demonstrate that the yeast chromosomal copy number is positively correlated with increased ethanol production under our experimental conditions.

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 741
Author(s):  
Doinita-Roxana Cioroiu Tirpan ◽  
Ancaelena Eliza Sterpu ◽  
Claudia Irina Koncsag ◽  
Alina Georgiana Ciufu ◽  
Tănase Dobre

The aim of this study is to evaluate the potential of dried Cystoseira barbata alga for ethanol production through alcoholic fermentation. The influence of the main factors affecting the fermentation are studied in the frame of a 23 factorial experimental plan. The main factors influencing the process are the fermentation temperature (t from 25 °C to 35 °C), the solid to liquid ratio (S/L from 0.040 g/g to 0.080 g/g), and the cellulase ratio (R from 8 U/g d.m to 16 U/g d.m.). The maximum volatile compounds yield of 0.2808 g/g d.m and ethanol yield of 0.0158 g/g d.m were favored by the following experimental conditions: process temperature of 35 °C, solid to liquid ratio of 0.0415, and enzyme ratio of 16 U/g d.m. A statistical model was used to correlate the product yield with the process factors. Additionally, 19 interesting bioactive compounds were found in the enzymatic hydrolysis and alcoholic fermentation broths which seem likely to maintain natural defence mechanisms against diseases and physical disorders.


Fermentation ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 59 ◽  
Author(s):  
Tingting Liu ◽  
Shuangcheng Huang ◽  
Anli Geng

Cost-effective production of cellulosic ethanol requires robust microorganisms for rapid co-fermentation of glucose and xylose. This study aims to develop a recombinant diploid xylose-fermenting Saccharomyces cerevisiae strain for efficient conversion of lignocellulosic biomass sugars to ethanol. Episomal plasmids harboring codon-optimized Piromyces sp. E2 xylose isomerase (PirXylA) and Orpinomyces sp. ukk1 xylose (OrpXylA) genes were constructed and transformed into S. cerevisiae. The strain harboring plasmids with tandem PirXylA was favorable for xylose utilization when xylose was used as the sole carbon source, while the strain harboring plasmids with tandem OrpXylA was beneficial for glucose and xylose cofermentation. PirXylA and OrpXylA genes were also individually integrated into the genome of yeast strains in multiple copies. Such integration was beneficial for xylose alcoholic fermentation. The respiration-deficient strain carrying episomal or integrated OrpXylA genes exhibited the best performance for glucose and xylose co-fermentation. This was partly attributed to the high expression levels and activities of xylose isomerase. Mating a respiration-efficient strain carrying the integrated PirXylA gene with a respiration-deficient strain harboring integrated OrpXylA generated a diploid recombinant xylose-fermenting yeast strain STXQ with enhanced cell growth and xylose fermentation. Co-fermentation of 162 g L−1 glucose and 95 g L−1 xylose generated 120.6 g L−1 ethanol in 23 h, with sugar conversion higher than 99%, ethanol yield of 0.47 g g−1, and ethanol productivity of 5.26 g L−1·h−1.


Nativa ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 352
Author(s):  
Adriano Mendes Lourenço ◽  
Aline Torquato Tavares ◽  
Tiago Alves Ferreira ◽  
Danilo Alves da Silva Porto Lopes ◽  
João Victor Gonçalves Carline ◽  
...  

A batata-doce (Ipomoea batatas (L.) Lam.) tem sido reportada como uma das espécies de planta com grande capacidade de converter biomassa em matéria prima para produção de etanol. O objetivo do trabalho foi avaliar o potencial de clones de batata-doce para produção de etanol. Foram avaliados 60 clones de batata-doce para produtividade de raízes, teor de amido nas raízes, produtividade de amido, coloração da casca e da polpa e o rendimento de etanol. O clone BDTO#122,32 e as cultivares Ana Clara e Carolina Vitória com média de 46,77; 42,75 e 41,25 t ha-¹, respectivamente, foram os que mais conseguiram acumular biomassa na forma de raiz. Os clones que apresentam as maiores médias de produtividade de amido por hectare foram BDTO#144.22 e BDTO#100.23, com valores de 15,46 e 14,16% t ha-1, com rendimentos de etanol de 8,33 e 7,63 m³ ha-¹. Os clones BDTO#144.22 e BDTO#100.23 apresentaram as maiores médias de produtividade de amido por hectare e rendimento de etanol, sendo, portanto, os mais promissores para a produção de etanol.Palavras-chave: Ipomoea batatas (L.) Lam, melhoramento genético, seleção, biocombustível. POTENTIAL OF EXPERIMENTAL CLONES OF SWEET POTATO FOR ETHANOL PRODUCTION ABSTRACT:Sweet potato (Ipomoea batatas (L.) Lam.) Has been reported as one of the plant species with great ability to convert biomass into feedstock for ethanol production. The objective of this work was to evaluate the potential of sweet potato clones for ethanol production. Twenty-six sweet potato clones were evaluated for root productivity, root starch content, starch yield, bark and pulp color, and ethanol yield. Clone BDTO # 122.32 and cultivars Ana Clara and Carolina Vitória averaging 46.77; 42.75 and 41.25 t ha-1, respectively, were the ones that were able to accumulate biomass in the root form. The clones presenting the highest starch productivity per hectare were BDTO # 144.22 and BDTO # 100.23, with values of 15.46 and 14.16% t ha-1, with ethanol yields of 8.33 and 7.63 m³ ha-¹. The clones BDTO # 144.22 and BDTO # 100.23 showed the highest averages of starch productivity per hectare and yield of ethanol, thus being the most promising for the production of ethanol.Keywords: Ipomoea potatoes (L.) Lam, breeding, selection, biofuel.


2021 ◽  
Author(s):  
Valeriy Bekmuradov

Production of biofuel such as ethanol from lignocellulosic biomass is a beneficial way to meet sustainability, energy security, and environmental goals. Lignocellulosic biomass such as source-separated organic (SSO) waste is particularly attractive since it is widely available, often at a negative cost, reduce the land depletion from using food-based biomass for ethanol production and reduce the amount of generated waste. Therefore, in order to meet the future fuel demands and cope with increasing volume of municipal waste this study was a first attempt to use SSO as a feedstock for ethanol production. The main objectives of the study were: a) to compare standard and modified celluloseorganic- solvent-based lignocellulosic fractionation (COSLIF) pretreatment of SSO waste for ethanol production in terms of enzyme savings, sugar formation and ethanol yields; b) to produce ethanol from SSO by using modified COSLIF pretreatment and fermentation with two different recombinant strains: Z. mobilis 8b and S. cerevisiae DA2416; and c) to develop experimental kinetic model capable of predicting behavior of batch SSCF on SSO waste with different SSO substrate concentrations using Berkeley Madonna program. Based on the obtained results, it was found that SSO is an excellent feedstock material for ethanol conversion. The efficiency of modified COSLIF pretreatment was improved by 20% compared to standard method using ethanol washing of pretreated SSO samples during the experimental procedures instead of acetone. On average, glucose yield from SSO samples pretreated by modified COSLIF was about 90% compared to 10% for untreated samples. S. cerevisiae DA2416 outperformed Z. mobilis 8b on ethanol yields during the fermentation process, with 0.50 g ethanol/g potential sugar fed on SSO in less than 5 days, with a 96% cellulose conversion, totalling in 150 g/L ethanol produced. A kinetic model with newly integrated values of experimentally defined SSO feedstock constants was proven to predict the ethanol yield accurately with substrate concentration ranges of 20 g/L - 50 g/L. Model prediction at higher substrate concentration (e.g. 100 g/L) deviated from the experimental values, suggesting that ethanol inhibition is a major factor in bioethanol conversion.


2012 ◽  
Vol 78 (16) ◽  
pp. 5708-5716 ◽  
Author(s):  
Sun-Mi Lee ◽  
Taylor Jellison ◽  
Hal S. Alper

ABSTRACTThe heterologous expression of a highly functional xylose isomerase pathway inSaccharomyces cerevisiaewould have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways inS. cerevisiaesuffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often require adaptive strain evolution. Here, we report on the directed evolution of thePiromycessp. xylose isomerase (encoded byxylA) for use in yeast. After three rounds of mutagenesis and growth-based screening, we isolated a variant containing six mutations (E15D, E114G, E129D, T142S, A177T, and V433I) that exhibited a 77% increase in enzymatic activity. When expressed in a minimally engineered yeast host containing agre3knockout andtal1andXKS1overexpression, the strain expressing this mutant enzyme improved its aerobic growth rate by 61-fold and both ethanol production and xylose consumption rates by nearly 8-fold. Moreover, the mutant enzyme enabled ethanol production by these yeasts under oxygen-limited fermentation conditions, unlike the wild-type enzyme. Under microaerobic conditions, the ethanol production rates of the strain expressing the mutant xylose isomerase were considerably higher than previously reported values for yeast harboring a xylose isomerase pathway and were also comparable to those of the strains harboring an oxidoreductase pathway. Consequently, this study shows the potential to evolve a xylose isomerase pathway for more efficient xylose utilization.


2010 ◽  
Vol 90 (2) ◽  
pp. 163-171 ◽  
Author(s):  
J G McLeod ◽  
W E May ◽  
D F Salmon ◽  
K. Sosulski ◽  
J B Thomas ◽  
...  

In recent years there has been a rapid growth in the fuel ethanol industry, increasing the need for a consistent supply of feedstock. This study was conducted to evaluate the potential of small grains in western Canada to supply feedstock to the ethanol industry. Thirty-one lines and cultivars of Canadian small grains were evaluated: eleven cultivars comprising five classes spring wheat, six cultivars of two and six row barley of feed, malting and hulless classes, eight cultivars of spring triticale and six cultivars of oat were grown at seven locations in western Canada and evaluated as feedstock for ethanol production. Starch concentrations and, for certain grains, β-glucan and pentosans were determined and used to estimate ethanol yields in L t-1 and L ha-1. On average, ethanol yield in L t-1 was wheat > triticale > barley > oat; however, for yield in L ha-1, only oat was inferior. This ranking was consistent across all locations tested. Estimates of ethanol yields indicated that certain cultivars within classes of grains were superior, such as CDC Buck, SWS 109, HY 617 and Pronghorn in the hulless barley, CWSWS, CPS-R and Triticale classes, respectively. Locations that produced the highest level of ethanol in one species tended to produce grain with the highest ethanol yields in the other species. Selection of cultivars with greater starch content, different starch quality and reduced pentosans as well as the advancements in and adoption of new fermentation technologies may lead to greater estimates of ethanol yields of small grain cereals in the future.Key words: Cereal grains, starch, pentosans, β-glucans, ethanol yield


2020 ◽  
Vol 9 (1) ◽  
pp. 57-76
Author(s):  
Madhanamohanan G. Mithra ◽  
Gouri Padmaja

Background: Literature on ethanol production from Lignocellulo-Starch Biomass (LCSB) containing starch besides cellulose and hemicellulose, is scanty. Fed-Batch Separate Hydrolysis And Fermentation (F-SHF) was earlier found more beneficial than Fed-Batch Simultaneous Saccharification and Fermentation (F-SSF). Objective: The study aimed at modification of the saccharification and fermentation strategies by including a prehydrolysis step prior to the SSF and compared the ethanol yields with co-culture fermentation using hexose-fermenting Saccharomyces cerevisiae and pentose-fermenting Scheffersomyces stipitis. Methods: Fed-batch hybrid-SSF and Fed-Batch Separate Hydrolysis and Co-culture Fermentation (F-SHCF) in improving ethanol yield from Steam (ST) or Dilute Sulfuric Acid (DSA) pretreated LCSBs (peels of root and vegetable crops) were studied. Results: There was a progressive build-up of ethanol during F-HSSF up to 72h and further production up to 120h was negligible, with no difference among pretreatments. Despite very high ethanol production in the initial 24h of fermentation by S.cerevisiae under F-SHCF, the further increase was negligible. A rapid hike in ethanol production was observed when S. stipitis was also supplemented because of xylose conversion to ethanol. Conclusion: While ST gave higher ethanol (296-323 ml/kg) than DSA under F-HSSF, the latter was advantageous under F-SHCF for certain residues. Prehydrolysis (24h; 50°C) enhanced initial sugar levels favouring fast fermentation and subsequent saccharification and fermentation occurred concurrently at 37°C for 120h, thus leading to energy saving and hence F-HSSF was advantageous. Owing to the low hemicellulose content in LCSBs, the relative advantage of co-culture fermentation over monoculture fermentation was not significant.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2614
Author(s):  
Barahona ◽  
Martín-Gil ◽  
Martín-Ramos ◽  
Pérez ◽  
Barriga

: The optimum nitrogen concentration for media supplementation and strain dominance are aspects of key importance to the industrial production of ethanol with a view to reducing costs and increasing yields. In this work, these two factors were investigated for four ethanologenic Saccharomyces cerevisiae strains (CLQCA-INT-001, CLQCA-INT-005, CLQCA-10-099, and UCLM 325), selected from the screening of 150 isolates, mostly from Ecuadorian yeast biodiversity. The effect of nitrogen concentration was assessed in terms of cellular growth, glucose consumption and ethanol production, and the yeast strains’ dominance was evaluated in continuous co-fermentation with cellular recycling by mitochondrial DNA analyses. Among the four selected yeast strains under study, CLQCA-INT-005 presented the highest glucose consumption at a nitrogen supplement concentration as low as 0.4 g·L−1, attaining an ethanol yield of up to 96.72% in 24 h. The same yeast strain was found to be highly competitive, showing a dominance of 80% after four cycles of fermentation in co-culture. Thus, CLQCA-INT-005 may be deemed as a very promising candidate to be used both at pilot-plant scale and at industrial scale cellulosic ethanol production.


2011 ◽  
Vol 64 (2) ◽  
pp. 341-347 ◽  
Author(s):  
Ana F. Tomas ◽  
Dimitar Karakashev ◽  
Irini Angelidaki

An extreme thermophilic ethanol-producing strain was isolated from an ethanol high-yielding mixed culture, originally isolated from a hydrogen producing reactor operated at 70 °C. Ethanol yields were assessed with increasing concentrations of xylose, up to 20 g/l. The ability of the strain to grow without nutrient addition (yeast extract, peptone and vitamins) was also assessed. The maximum ethanol yield achieved was 1.28 molethanol/molxylose consumed (77% of the theoretical yield), at 2 g/l of initial xylose concentration. The isolate was able to grow and produce ethanol as the main fermentation product under most of the conditions tested, including in media lacking vitamins, peptone and yeast extract. The results indicate that this new organism is a promising candidate for the development of a second generation bio-ethanol production process.


2021 ◽  
Author(s):  
Felipe A. F. Antunes ◽  
Kalavathy Rajan ◽  
Angele Djioleu ◽  
Thiago M. Rocha ◽  
Larissa P. Brumano ◽  
...  

Abstract The production of second generation (2G) ethanol remains an interesting proposition for the implementation of sustainable and net carbon-neutral energy systems. 2G makes use of renewable lignocellulosic feedstocks, generating fermentable sugars that are converted to ethanol or other bio-based products. To be economically viable, 2G biorefineries must make use of all processing streams, including the less desirable C5 sugar stream. In this work, a strategy of sequential acid and alkaline pretreatment of the lignocellulosic feedstock switchgrass for improvement of fermentable sugar yield, and the subsequent utilization of wild yeasts for co-fermentation of its C5-C6 sugar streams are presented. Hemicellulose-enriched hydrolysates, obtained by dilute acid pretreatment of switchgrass, were fermented by a newly-isolated wild Scheffersomyces parashehatae strain–UFMG-HM-60.1b; corresponding ethanol yield (YPS) and volumetric productivity (QP) were 0.19 g/g and 0.16 g/L h, respectively. Afterwards, the remaining switchgrass cellulignin fraction was subjected to optimized alkaline delignification at 152 ºC for 30 min. The delignified solid fraction was subjected to contiguous enzymatic saccharification and fermentation, releasing a C6 sugar stream in which Saccharomyces cerevisiae 174 strain displayed a productivity of 0.46 g/g (YPS) and 0.70 g/L h (QP), whereas the S. parashehatae UFMG-HM-60.1b presented YPS and QP of 0.29 g/g and 0.38 g/L h, respectively. Upon combining the conversion of hemicellulose (37%) and cellulose-derived sugars (57%), the S. parashehatae strain provided higher yield (94%) than the generic S. cerevisiae (90%). Henceforth, our integrated pretreatment and co-fermentation process provides a pathway for maximum utilization of the switchgrass carbohydrates for 2G ethanol production.


Sign in / Sign up

Export Citation Format

Share Document