scholarly journals Synthesis and Photothermal Effects of Intracellular Aggregating Nanodrugs Targeting Nasopharyngeal Carcinoma

Author(s):  
Ying Zhong ◽  
Naveen Kumar Bejjanki ◽  
Xiangwan Miao ◽  
Huanhuan Weng ◽  
Quanming Li ◽  
...  

Chemotherapy for the treatment of nasopharyngeal carcinoma (NPC) is usually associated with many side effects; therefore, its treatment options have not yet been completely resolved. Improving distribution to the targeted tumor region and enhancing the cellular uptake of drugs can efficiently alleviate the above adverse medical effects. Near-infrared (NIR) laser light-mediated photothermal therapy (PTT) and photodynamic therapy (PDT) are promising strategies for cancer treatment. In the present study, we developed an efficient multifunctional nanocluster with enhanced targeting and aggregation efficiency for PTT and PDT that is composed of a biocompatible folic acid (FA), indocyanine green (ICG) and 2-cyanobenzothiazole (CBT)-functionalized peptide labeled with an aldehyde sodium alginate-modified magnetic iron oxide nanoparticle (ASA-MNP)-based nanocarrier. FA can bind to folate receptors on cancer cell membranes to enhance nanocluster uptake. CBT-modified peptide can react with glutathione (GSH), which is typically present at higher levels in cancer cells, to form intracellular aggregates and increase the local concentration of the nanodrug. In in vitro studies, these nanodrugs displayed the desired uptake capacity by NPC cells and the ability to suppress the growth of cancer cells under laser irradiation. Animal studies validated that these nanodrugs are safe and nontoxic, efficiently accumulate in NPC tumor sites following injection via the caudal vein, and shows superior inhibition of tumor growth in a tumor-bearing mouse model upon near-infrared laser irradiation. The results indicate the potential application of the multifunctional nanoparticles (NPs), which can be used as a new method for the treatment of folate receptor-positive NPC.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Elizabeth De Jesus ◽  
Jane J. Keating ◽  
Sumith A. Kularatne ◽  
Jack Jiang ◽  
Ryan Judy ◽  
...  

Background. Intraoperative imaging can identify cancer cells in order to improve resection; thus fluorescent contrast agents have emerged. Our objective was to do a preclinical comparison of two fluorescent dyes, EC17 and OTL38, which both target folate receptor but have different fluorochromes. Materials. HeLa and KB cells lines were used for in vitro and in vivo comparisons of EC17 and OTL38 brightness, sensitivity, pharmacokinetics, and biodistribution. In vivo experiments were then performed in mice. Results. The peak excitation and emission wavelengths of EC17 and OTL38 were 470/520 nm and 774/794 nm, respectively. In vitro, OTL38 required increased incubation time compared to EC17 for maximum fluorescence; however, peak signal-to-background ratio (SBR) was 1.4-fold higher compared to EC17 within 60 minutes (p<0.001). Additionally, the SBR for detecting smaller quantity of cells was improved with OTL38. In vivo, the mean improvement in SBR of tumors visualized using OTL38 compared to EC17 was 3.3 fold (range 1.48–5.43). Neither dye caused noticeable toxicity in animal studies. Conclusions. In preclinical testing, OTL38 appears to have superior sensitivity and brightness compared to EC17. This coincides with the accepted belief that near infrared (NIR) dyes tend to have less autofluorescence and scattering issues than visible wavelength fluorochromes.


2021 ◽  
Vol 22 (11) ◽  
pp. 5705
Author(s):  
Karolina Szewczyk-Golec ◽  
Marta Pawłowska ◽  
Roland Wesołowski ◽  
Marcin Wróblewski ◽  
Celestyna Mila-Kierzenkowska

Toxoplasma gondii is an apicomplexan parasite causing toxoplasmosis, a common disease, which is most typically asymptomatic. However, toxoplasmosis can be severe and even fatal in immunocompromised patients and fetuses. Available treatment options are limited, so there is a strong impetus to develop novel therapeutics. This review focuses on the role of oxidative stress in the pathophysiology and treatment of T. gondii infection. Chemical compounds that modify redox status can reduce the parasite viability and thus be potential anti-Toxoplasma drugs. On the other hand, oxidative stress caused by the activation of the inflammatory response may have some deleterious consequences in host cells. In this respect, the potential use of natural antioxidants is worth considering, including melatonin and some vitamins, as possible novel anti-Toxoplasma therapeutics. Results of in vitro and animal studies are promising. However, supplementation with some antioxidants was found to promote the increase in parasitemia, and the disease was then characterized by a milder course. Undoubtedly, research in this area may have a significant impact on the future prospects of toxoplasmosis therapy.


2021 ◽  
Vol 22 (11) ◽  
pp. 5492
Author(s):  
Dawid Szwedowski ◽  
Joanna Szczepanek ◽  
Łukasz Paczesny ◽  
Jan Zabrzyński ◽  
Maciej Gagat ◽  
...  

Knee osteoarthritis (KOA) represents a clinical challenge due to poor potential for spontaneous healing of cartilage lesions. Several treatment options are available for KOA, including oral nonsteroidal anti-inflammatory drugs, physical therapy, braces, activity modification, and finally operative treatment. Intra-articular (IA) injections are usually used when the non-operative treatment is not effective, and when the surgery is not yet indicated. More and more studies suggesting that IA injections are as or even more efficient and safe than NSAIDs. Recently, research to improve intra-articular homeostasis has focused on biologic adjuncts, such as platelet-rich plasma (PRP). The catabolic and inflammatory intra-articular processes that exists in knee osteoarthritis (KOA) may be influenced by the administration of PRP and its derivatives. PRP can induce a regenerative response and lead to the improvement of metabolic functions of damaged structures. However, the positive effect on chondrogenesis and proliferation of mesenchymal stem cells (MSC) is still highly controversial. Recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, significant progress has been made in understanding the mechanism of PRP action. In this review, we will discuss mechanisms related to inflammation and chondrogenesis in cartilage repair and regenerative processes after PRP administration in in vitro and animal studies. Furthermore, we review clinical trials of PRP efficiency in changing the OA biomarkers in knee joint.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoichi Katsube ◽  
Kazuhiro Noma ◽  
Toshiaki Ohara ◽  
Noriyuki Nishiwaki ◽  
Teruki Kobayashi ◽  
...  

AbstractCancer-associated fibroblasts (CAFs) have an important role in the tumor microenvironment. CAFs have the multifunctionality which strongly support cancer progression and the acquisition of therapeutic resistance by cancer cells. Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer treatment that uses a highly selective monoclonal antibody (mAb)-photosensitizer conjugate. We developed fibroblast activation protein (FAP)-targeted NIR-PIT, in which IR700 was conjugated to a FAP-specific antibody to target CAFs (CAFs-targeted NIR-PIT: CAFs-PIT). Thus, we hypothesized that the control of CAFs could overcome the resistance to conventional chemotherapy in esophageal cancer (EC). In this study, we evaluated whether EC cell acquisition of stronger malignant characteristics and refractoriness to chemoradiotherapy are mediated by CAFs. Next, we assessed whether the resistance could be rescued by eliminating CAF stimulation by CAFs-PIT in vitro and in vivo. Cancer cells acquired chemoradiotherapy resistance via CAF stimulation in vitro and 5-fluorouracil (FU) resistance in CAF-coinoculated tumor models in vivo. CAF stimulation promoted the migration/invasion of cancer cells and a stem-like phenotype in vitro, which were rescued by elimination of CAF stimulation. CAFs-PIT had a highly selective effect on CAFs in vitro. Finally, CAF elimination by CAFs-PIT in vivo demonstrated that the combination of 5-FU and NIR-PIT succeeded in producing 70.9% tumor reduction, while 5-FU alone achieved only 13.3% reduction, suggesting the recovery of 5-FU sensitivity in CAF-rich tumors. In conclusion, CAFs-PIT could overcome therapeutic resistance via CAF elimination. The combined use of novel targeted CAFs-PIT with conventional anticancer treatments can be expected to provide a more effective and sensible treatment strategy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoxia Song ◽  
Zhi Chen ◽  
Xue Zhang ◽  
Junfeng Xiong ◽  
Teng Jiang ◽  
...  

AbstractMagnetic micro/nanorobots attracted much attention in biomedical fields because of their precise movement, manipulation, and targeting abilities. However, there is a lack of research on intelligent micro/nanorobots with stimuli-responsive drug delivery mechanisms for cancer therapy. To address this issue, we developed a type of strong covalently bound tri-bead drug delivery microrobots with NIR photothermal response azobenzene molecules attached to their carboxylic surface groups. The tri-bead microrobots are magnetic and showed good cytocompatibility even when their concentration is up to 200 µg/mL. In vitro photothermal experiments demonstrated fast NIR-responsive photothermal property; the microrobots were heated to 50 °C in 4 min, which triggered a significant increase in drug release. Motion control of the microrobots inside a microchannel demonstrated the feasibility of targeted therapy on tumor cells. Finally, experiments with lung cancer cells demonstrated the effectiveness of targeted chemo-photothermal therapy and were validated by cell viability assays. These results indicated that tri-bead microrobots have excellent potential for targeted chemo-photothermal therapy for lung cancer cell treatment.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3061
Author(s):  
Natalia Krasteva ◽  
Dessislava Staneva ◽  
Bela Vasileva ◽  
George Miloshev ◽  
Milena Georgieva

Central focus in modern anticancer nanosystems is given to certain types of nanomaterials such as graphene oxide (GO). Its functionalization with polyethylene glycol (PEG) demonstrates high delivery efficiency and controllable release of proteins, bioimaging agents, chemotherapeutics and anticancer drugs. GO–PEG has a good biological safety profile, exhibits high NIR absorbance and capacity in photothermal treatment. To investigate the bioactivity of PEGylated GO NPs in combination with NIR irradiation on colorectal cancer cells we conducted experiments that aim to reveal the molecular mechanisms of action of this nanocarrier, combined with near-infrared light (NIR) on the high invasive Colon26 and the low invasive HT29 colon cancer cell lines. During reaching cancer cells the phototoxicity of GO–PEG is modulated by NIR laser irradiation. We observed that PEGylation of GO nanoparticles has well-pronounced biocompatibility toward colorectal carcinoma cells, besides their different malignant potential and treatment times. This biocompatibility is potentiated when GO–PEG treatment is combined with NIR irradiation, especially for cells cultured and treated for 24 h. The tested bioactivity of GO–PEG in combination with NIR irradiation induced little to no damages in DNA and did not influence the mitochondrial activity. Our findings demonstrate the potential of GO–PEG-based photoactivity as a nanosystem for colorectal cancer treatment.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Jui-Teng Lin ◽  
Yueh-Sheng Chiang ◽  
Guang-Hong Lin ◽  
Hsinyu Lee ◽  
Hsia-Wei Liu

We present a novel pulsed-train near-IR diode laser system with real-time temperature monitoring of the laser-heated cancer cell mixed in gold nanorod solution. Near-IR diode laser at 808 nm matching the gold nanorod absorption peak (with an aspect ratio about 4.0) was used in this study. Both surface and volume temperatures were measured and kept above 43°C, the temperature for cancer cells destruction. The irradiation time needed in our pulsed-train system with higher laser fluence for killing the cancel cells is about 1–3 minutes, much shorter than conventional methods (5–10 minutes). Cell viabilities in gold nanorod mixed and controlled solutions are studied by green fluorescence.


2020 ◽  
Vol 9 (3) ◽  
pp. 881 ◽  
Author(s):  
Shuzo Sakata ◽  
Ryo Kunimatsu ◽  
Yuji Tsuka ◽  
Ayaka Nakatani ◽  
Tomoka Hiraki ◽  
...  

High-frequency near-infrared diode laser provides a high-peak output, low-heat accumulation, and efficient biostimulation. Although these characteristics are considered suitable for osteoarthritis (OA) treatment, the effect of high-frequency near-infrared diode laser irradiation in in vitro or in vivo OA models has not yet been reported. Therefore, we aimed to assess the biological effects of high-frequency near-infrared diode laser irradiation on IL-1β-induced chondrocyte inflammation in an in vitro OA model. Normal Human Articular Chondrocyte-Knee (NHAC-Kn) cells were stimulated with human recombinant IL-1β and irradiated with a high-frequency near-infrared diode laser (910 nm, 4 or 8 J/cm2). The mRNA and protein expression of relevant inflammation- and cartilage destruction-related proteins was analyzed. Interleukin (IL) -1β treatment significantly increased the mRNA levels of IL-1β, IL-6, tumor necrosis factor (TNF) -α, matrix metalloproteinases (MMP) -1, MMP-3, and MMP-13. High-frequency near-infrared diode laser irradiation significantly reduced the IL-1β-induced expression of IL-1β, IL-6, TNF-α, MMP-1, and MMP-3. Similarly, high-frequency near-infrared diode laser irradiation decreased the IL-1β-induced increase in protein expression and secreted levels of MMP-1 and MMP-3. These results highlight the therapeutic potential of high-frequency near-infrared diode laser irradiation in OA.


Sign in / Sign up

Export Citation Format

Share Document