scholarly journals Application of Nucleic Acid Frameworks in the Construction of Nanostructures and Cascade Biocatalysts: Recent Progress and Perspective

Author(s):  
Gan Zhu ◽  
Ping Song ◽  
Jing Wu ◽  
Minglan Luo ◽  
Zhipeng Chen ◽  
...  

Nucleic acids underlie the storage and retrieval of genetic information literally in all living organisms, and also provide us excellent materials for making artificial nanostructures and scaffolds for constructing multi-enzyme systems with outstanding performance in catalyzing various cascade reactions, due to their highly diverse and yet controllable structures, which are well determined by their sequences. The introduction of unnatural moieties into nucleic acids dramatically increased the diversity of sequences, structures, and properties of the nucleic acids, which undoubtedly expanded the toolbox for making nanomaterials and scaffolds of multi-enzyme systems. In this article, we first introduce the molecular structures and properties of nucleic acids and their unnatural derivatives. Then we summarized representative artificial nanomaterials made of nucleic acids, as well as their properties, functions, and application. We next review recent progress on constructing multi-enzyme systems with nucleic acid structures as scaffolds for cascade biocatalyst. Finally, we discuss the future direction of applying nucleic acid frameworks in the construction of nanomaterials and multi-enzyme molecular machines, with the potential contribution that unnatural nucleic acids may make to this field highlighted.

2021 ◽  
Vol 50 (8) ◽  
pp. 5126-5164 ◽  
Author(s):  
Luke K. McKenzie ◽  
Roberto El-Khoury ◽  
James D. Thorpe ◽  
Masad J. Damha ◽  
Marcel Hollenstein

While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.


Author(s):  
Dimitrij Lang

The success of the protein monolayer technique for electron microscopy of individual DNA molecules is based on the prevention of aggregation and orientation of the molecules during drying on specimen grids. DNA adsorbs first to a surface-denatured, insoluble cytochrome c monolayer which is then transferred to grids, without major distortion, by touching. Fig. 1 shows three basic procedures which, modified or not, permit the study of various important properties of nucleic acids, either in concert with other methods or exclusively:1) Molecular weights relative to DNA standards as well as number distributions of molecular weights can be obtained from contour length measurements with a sample standard deviation between 1 and 4%.


Author(s):  
Stephen D. Jett

The electrophoresis gel mobility shift assay is a popular method for the study of protein-nucleic acid interactions. The binding of proteins to DNA is characterized by a reduction in the electrophoretic mobility of the nucleic acid. Binding affinity, stoichiometry, and kinetics can be obtained from such assays; however, it is often desirable to image the various species in the gel bands using TEM. Present methods for isolation of nucleoproteins from gel bands are inefficient and often destroy the native structure of the complexes. We have developed a technique, called “snapshot blotting,” by which nucleic acids and nucleoprotein complexes in electrophoresis gels can be electrophoretically transferred directly onto carbon-coated grids for TEM imaging.


2021 ◽  
Vol 23 (1) ◽  
pp. 219-228
Author(s):  
Nabanita Saikia ◽  
Mohamed Taha ◽  
Ravindra Pandey

The rational design of self-assembled nanobio-molecular hybrids of peptide nucleic acids with single-wall nanotubes rely on understanding how biomolecules recognize and mediate intermolecular interactions with the nanomaterial's surface.


Author(s):  
Xingyu Wang ◽  
Yi-Hui Wang ◽  
Zhen Song ◽  
Xin-Yuan Hu ◽  
Jiping Wei ◽  
...  

The diagnosis and therapy of tumors are challenging problems in the medical field. Peptides are derived from living organisms with excellent biocompatibility, low-toxicity/non-toxicity, and negligible immunogenicity, and they have been...


The Analyst ◽  
2021 ◽  
Author(s):  
Qingteng Lai ◽  
Wei Chen ◽  
Yanke Zhang ◽  
Zheng-Chun Liu

Peptide nucleic acids (PNAs) have attracted tremendous interest in the fabrication of highly sensitive electrochemical nucleic acid biosensor due to their higher stability and increased sensitivity than common DNA probes....


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Katja Engel ◽  
Sara Coyotzi ◽  
Melody A. Vachon ◽  
Jennifer R. McKelvie ◽  
Josh D. Neufeld

ABSTRACT Bentonite clay is an integral component of the engineered barrier system of deep geological repositories (DGRs) that are planned for the long-term storage of high-level radioactive waste. Although nucleic acid extraction and analysis can provide powerful qualitative and quantitative data reflecting the presence, abundance, and functional potential of microorganisms within DGR materials, extraction of microbial DNA from bentonite clay is challenging due to the low biomass and adsorption of nucleic acids to the charged clay matrix. In this study, we used quantitative PCR, gel fingerprinting, and high-throughput sequencing of 16S rRNA gene amplicons to assess DNA extraction efficiency from natural MX-80 bentonite and the same material “spiked” with Escherichia coli genomic DNA. Extraction protocols were tested without additives and with casein and phosphate as blocking agents. Although we demonstrate improved DNA recovery by blocking agents at relatively high DNA spiking concentrations, at relatively low spiking concentrations, we detected a high proportion of contaminant nucleic acids from blocking agents that masked sample-specific microbial profile data. Because bacterial genomic DNA associated with casein preparations was insufficiently removed by UV treatment, casein is not recommended as an additive for DNA extractions from low-biomass samples. Instead, we recommend a kit-based extraction protocol for bentonite clay without additional blocking agents, as tested here and validated with multiple MX-80 bentonite samples, ensuring relatively high DNA recoveries with minimal contamination. IMPORTANCE Extraction of microbial DNA from MX-80 bentonite is challenging due to low biomass and adsorption of nucleic acid molecules to the charged clay matrix. Blocking agents improve DNA recovery, but their impact on microbial community profiles from low-biomass samples has not been characterized well. In this study, we evaluated the effect of casein and phosphate as blocking agents for quantitative recovery of nucleic acids from MX-80 bentonite. Our data justify a simplified framework for analyzing microbial community DNA associated with swelling MX-80 bentonite samples within the context of a deep geological repository for used nuclear fuel. This study is among the first to demonstrate successful extraction of DNA from Wyoming MX-80 bentonite.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3317
Author(s):  
Eylon Yavin

The DNA mimic, PNA (peptide nucleic acid), has been with us now for almost 3 decades [...]


ILR Review ◽  
1994 ◽  
Vol 48 (1) ◽  
pp. 5-27 ◽  
Author(s):  
John T. Addison ◽  
W. Stanley Siebert

This paper assesses the recent progress and future direction of labor policy in the European Community, now the European Union. The authors show that most of the mandates foreshadowed under the December 1989 Community Social Charter have now been enacted into law. They analyze the possible costs, as well as the benefits, of these firstphase mandates and show the link between these adjustment costs and the Community's policy of providing subsidies to its poorer member states. They also demonstrate how the new Treaty on European Union, agreed to at Maastricht in December 1991, has increased the scope for Community-level labor market regulation.


Sign in / Sign up

Export Citation Format

Share Document