scholarly journals Thermostable Cellulases / Xylanases From Thermophilic and Hyperthermophilic Microorganisms: Current Perspective

Author(s):  
Samaila Boyi Ajeje ◽  
Yun Hu ◽  
Guojie Song ◽  
Sunday Bulus Peter ◽  
Richmond Godwin Afful ◽  
...  

The bioconversion of lignocellulose into monosaccharides is critical for ensuring the continual manufacturing of biofuels and value-added bioproducts. Enzymatic degradation, which has a high yield, low energy consumption, and enhanced selectivity, could be the most efficient and environmentally friendly technique for converting complex lignocellulose polymers to fermentable monosaccharides, and it is expected to make cellulases and xylanases the most demanded industrial enzymes. The widespread nature of thermophilic microorganisms allows them to proliferate on a variety of substrates and release substantial quantities of cellulases and xylanases, which makes them a great source of thermostable enzymes. The most significant breakthrough of lignocellulolytic enzymes lies in lignocellulose-deconstruction by enzymatic depolymerization of holocellulose into simple monosaccharides. However, commercially valuable thermostable cellulases and xylanases are challenging to produce in high enough quantities. Thus, the present review aims at giving an overview of the most recent thermostable cellulases and xylanases isolated from thermophilic and hyperthermophilic microbes. The emphasis is on recent advancements in manufacturing these enzymes in other mesophilic host and enhancement of catalytic activity as well as thermostability of thermophilic cellulases and xylanases, using genetic engineering as a promising and efficient technology for its economic production. Additionally, the biotechnological applications of thermostable cellulases and xylanases of thermophiles were also discussed.

2020 ◽  
Vol 14 (1) ◽  
pp. 10-13 ◽  
Author(s):  
Lynn Y. Wan

Electrospinning is a highly efficient technology for fabrication of a wide variety of polymeric nanofibers. However, the development of traditional needle-based electrospinning has been hampered by its low productivity and need of tedious work dealing with needles cleaning, installation and uninstallation. As one of the most promising needleless electrospinning means, bubble electrospinning is known for its advantages of high productivity and relatively low energy consumption due to the introduction of a third force, air flow, as a major force overcoming the surface tension. In this paper, the restrictions of conventional electrospinning and the advantages of needleless electrospinning, especially the bubble electrospinning were elaborated. Reports and patents on bubble-spun nanofibers with unique surface morphologies were also reviewed in respect of their potential applications.


2017 ◽  
Vol 19 (8) ◽  
pp. 1969-1982 ◽  
Author(s):  
Deepak Verma ◽  
Rizki Insyani ◽  
Young-Woong Suh ◽  
Seung Min Kim ◽  
Seok Ki Kim ◽  
...  

For realizing sustainable bio-based refineries, it is crucial to obtain high yields of value-added chemicalsviadirect conversion of cellulose and lignocellulosic biomass.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 82
Author(s):  
Yifeng Xu ◽  
Nick Porter ◽  
Jamie L. Foster ◽  
James P. Muir ◽  
Paul Schwab ◽  
...  

Biofuels produced from non-food lignocellulosic feedstocks have the potential to replace a significant percentage of fossil fuels via high yield potential and suitability for cultivation on marginal lands. Commercialization of dedicated lignocellulosic crops into single biofuels, however, is hampered by conversion technology costs and decreasing oil prices. Integrated biorefinery approaches, where value-added chemicals are produced in conjunction with biofuels, offer significant potential towards overcoming this economic disadvantage. In this study, candidate lignocellulosic feedstocks were evaluated for their potential biomass and silica yields. Feedstock entries included pearl millet-napiergrass (“PMN”; Pennisetum glaucum [L.] R. Br. × P. purpureum Schumach.), napiergrass (P. purpureum Schumach.), annual sorghum (Sorghum bicolor [L.] Moench), pearl millet (P. glaucum [L.] R. Br.), perennial sorghum (Sorghum spp.), switchgrass (Panicum virgatum L.), sunn hemp (Crotalaria juncea L.), giant miscanthus (Miscanthus × giganteus J.M. Greef and Deuter), and energy cane (Saccharum spp.). Replicated plots were planted at three locations and characterized for biomass yield, chemical composition including hemicellulose, cellulose, acid detergent lignin (ADL), neutral detergent fiber (NDF), crude protein (CP), and silica concentration. The PMN, napiergrass, energy cane, and sunn hemp had the highest biomass yields. They were superior candidates for ethanol production due to high cellulose and hemicellulose content. They also had high silica yield except for sunn hemp. Silica yield among feedstock entries ranged from 41 to 3249 kg ha−1. Based on high bioethanol and biosilica yield potential, PMN, napiergrass, and energy cane are the most promising biorefinery feedstock candidates for improving biofuel profitability.


2011 ◽  
Vol 77 (10) ◽  
pp. 3197-3201 ◽  
Author(s):  
Xiaoman Xu ◽  
Chao Gao ◽  
Xifeng Zhang ◽  
Bin Che ◽  
Cuiqing Ma ◽  
...  

ABSTRACTProduction ofN-acetyl-d-neuraminic acid (Neu5Ac) via biocatalysis is traditionally conducted using isolated enzymes or whole cells. The use of isolated enzymes is restricted by the time-consuming purification process, whereas the application of whole cells is limited by the permeability barrier presented by the microbial cell membrane. In this study, a novel type of biocatalyst, Neu5Ac aldolase presented on the surface ofBacillus subtilisspores, was used for the production of Neu5Ac. Under optimal conditions, Neu5Ac at a high concentration (54.7 g liter−1) and a high yield (90.2%) was obtained under a 5-fold excess of pyruvate overN-acetyl-d-mannosamine. The novel biocatalyst system, which is able to express and immobilize the target enzyme simultaneously on the surface ofB. subtilisspores, represents a suitable alternative for value-added chemical production.


Author(s):  
Ruby Ray ◽  
RB Thorpe

In the present investigation, pyrolysis and gasification, two widely used thermochemical processes, are compared as potential chemical recycling methods for MWP and plastic rich MSW in terms of products of high value and their end uses. High temperature pyrolysis results in a wide spectrum of products which also contain monomers of C2-C4 range such as ethylene and 1,3-butadiene. Recovery of monomers from their isomers and other products is difficult and energy-intensive. Gasification breaks solid wastes into simple molecules (mainly CO & H2) which subsequently can be converted to value added liquid chemicals (namely alcohols) by a catalytic synthesis processes. Synthetic alcohol then can be converted to the desired petrochemical precursors. After reviewing different aspects of both pyrolysis and gasification, recycling through gasification is chosen as the preferred route for project SPORT as syngas product can be converted into several key petrochemical products in high yield.


2016 ◽  
Vol 32 (6) ◽  
Author(s):  
Pranav D. Pathak ◽  
Sachin A. Mandavgane ◽  
Bhaskar D. Kulkarni

AbstractBanana peel (BP) is an agrowaste produced in large volumes annually, especially by food-processing industries; however, its disposal is of significant concern. However, recent research suggests that BP is a valuable source of bioactive compounds, which can be converted into value-added products. This article reviews the conversion process of value-added products from BP and provides an outline on the chemical composition of BP and its possible applications. In addition, we also discuss the utilization of BP as a substrate to produce animal feed, biofertilizer, dietary fibers, clean energy, industrial enzymes, as well as its use in the synthesis of nanomaterials. Based on the research conducted so far, it is obvious that BP has a wide variety of applications, and thus, developing a biorefinery approach to adequately utilize BP will help realize its economic benefits to the fullest. Based on the valorization of BP, a scheme for BP biorefinery has been proposed. A material balance for BP biorefinery for 1-ton bone-dry BP is presented and our results show that 432 kg of protein or 170 kg of citric acid, 170 kg of pectin, 325 m


2017 ◽  
Vol 202 ◽  
pp. 415-431 ◽  
Author(s):  
Max Cárdenas-Fernández ◽  
Maria Bawn ◽  
Charlotte Hamley-Bennett ◽  
Penumathsa K. V. Bharat ◽  
Fabiana Subrizi ◽  
...  

Over 8 million tonnes of sugar beet are grown annually in the UK. Sugar beet pulp (SBP) is the main by-product of sugar beet processing which is currently dried and sold as a low value animal feed. SBP is a rich source of carbohydrates, mainly in the form of cellulose and pectin, including d-glucose (Glu), l-arabinose (Ara) and d-galacturonic acid (GalAc). This work describes the technical feasibility of an integrated biorefinery concept for the fractionation of SBP and conversion of these monosaccharides into value-added products. SBP fractionation is initially carried out by steam explosion under mild conditions to yield soluble pectin and insoluble cellulose fractions. The cellulose is readily hydrolysed by cellulases to release Glu that can then be fermented by a commercial yeast strain to produce bioethanol at a high yield. The pectin fraction can be either fully hydrolysed, using physico-chemical methods, or selectively hydrolysed, using cloned arabinases and galacturonases, to yield Ara-rich and GalAc-rich streams. These monomers can be separated using either Centrifugal Partition Chromatography (CPC) or ultrafiltration into streams suitable for subsequent enzymatic upgrading. Building on our previous experience with transketolase (TK) and transaminase (TAm) enzymes, the conversion of Ara and GalAc into higher value products was explored. In particular the conversion of Ara into l-gluco-heptulose (GluHep), that has potential therapeutic applications in hypoglycaemia and cancer, using a mutant TK is described. Preliminary studies with TAm also suggest GluHep can be selectively aminated to the corresponding chiral aminopolyol. The current work is addressing the upgrading of the remaining SBP monomer, GalAc, and the modelling of the biorefinery concept to enable economic and Life Cycle Analysis (LCA).


2021 ◽  
Vol 11 (1) ◽  
pp. 1-10
Author(s):  
Tengku Hamid ◽  
◽  
Nur Abidin ◽  
Nurmusfirah Hasan ◽  
◽  
...  

Hot spring is a natural habitat for thermophilic bacteria and the primary source of thermostable enzymes useful in industrial applications. In Malaysia, the search for thermophilic organisms has been focused on hot springs, especially on the peninsular West coast. In this work, lipase or esterase producing thermophilic microorganisms were isolated from East coast hot springs in Pahang and Terengganu's states. Morphological and biochemical analysis were carried out on Isolates LH1, LH2, LH3, LH4, LH5, B2B2 and S1B4, which showed that they are gram positive, aerobic, spore forming, and motile organisms. All of the seven isolates showed the ability to grow at 45°C and formed hydrolysis zones on tributyrin agar plates. However, only isolate B2B2 and S1B4 were able to thrive at higher temperatures of up to 65°C. The genotypic characterisation was carried out using 16S rRNA sequencing. Bacillus and Geobacillus species were found to be the dominant bacteria isolated from these hot springs. From La hot spring, isolate LH1 (MT 645486), Isolates LH2 (MT645483), LH3 (MT645484), LH4 (MT 645485) and LH5 (MT 645487) were all closely related to Bacillus sp. (at 97.3-97.9%). Meanwhile, from Bentong and Sungai Lembing hot springs, isolates B2B2 (MT668631) and S1B4 (MT668632) were near related to either Geobacillus kaustophilus or Geobacillus thermoleovorans; each at 98.5% and 97.9% similarity, respectively. These strains from Geobacillus sp. were able to thrive at higher temperature and their thermostable esterases or lipases have properties useful for biotechnological applications.


2021 ◽  
Vol 10 (2) ◽  
pp. 140-149
Author(s):  
Yustisia Yustisia ◽  
NP Sri Ratmini ◽  
J Amirrullah ◽  
Y Juwita ◽  
YPAP Hutabarat ◽  
...  

Identification of the advantages of hybrid maize lines is needed to support the increased production and development of maize in tidal fields. This study aimed to identify the agronomic characters and yield components of hybrid maize lines/varieties and their relationship with high yield and efficient fertilization in tidal fields.  The design used was a Split Plot with three replications. The Main Plot was a hybrid maize line/variety (L39/MR4, MGOLD/G8, G28/MGOLD, P27). The subplots were Composite Fertilizer with 2 measures, namely 600 kg/ha and 720 kg/ha. The fertilizers of Urea (50%), SP 36 and NPK (100%) were given at 10 days after planting (DAP). The remaining Urea was given at 30 DAP, 50% and 58.33% respectively in the Composite Fertilizer treatment of 600 kg/ha and 720 kg/ha. The technical culture applied was optimum tillage with the 70 cm x 25 cm spacing, the irrigation being carried out at D/DAP and 15 DAP, the optimal control on the weed and Plant Pest Organisms. The result showed that the number of rows/cobs was an alternative variable in identifying maize lines/varieties with high yield and efficient fertilization. This character was closely correlated with seed/ear weight (r = 0.94) and Grain Yield Efficiency Index/GYEI (r = 0.84). All Genotypes were nutrient efficient (GYEI > 1) except G28/MGOLD (IGYEI < 1). Another approach used to identify efficient fertilization lines/varieties was the variable percentage of yield reduction through regression equations with GYEI (y = - 0.0104 x + 1.0426).  The character of high number of rows/cob could be used as genetic material in plant breeding programs. The lines/varieties as a component of efficient technology and high productivity would contribute to increase production and development of maize in tidal fields.


Sign in / Sign up

Export Citation Format

Share Document