scholarly journals Recent Advances in Metal-Organic Framework-Based Electrochemical Biosensing Applications

Author(s):  
Mengjie Li ◽  
Guangyao Zhang ◽  
Andrews Boakye ◽  
Huining Chai ◽  
Lijun Qu ◽  
...  

In the face of complex environments, considerable effort has been made to accomplish sensitive, accurate and highly-effective detection of target analytes. Given the versatility of metal clusters and ligands, high porosity and large specific surface area, metal–organic framework (MOF) provides researchers with prospective solutions for the construction of biosensing platforms. Combined with the benefits of electrochemistry method such as fast response, low cost and simple operation, the untapped applications of MOF for biosensors are worthy to be exploited. Therefore, this review briefly summarizes the preparation methods of electroactive MOF, including synthesize with electroactive ligands/metal ions, functionalization of MOF with biomolecules and modification for MOF composites. Moreover, recent biosensing applications are highlighted in terms of small biomolecules, biomacromolecules, and pathogenic cells. We conclude with a discussion of future challenges and prospects in the field. It aims to offer researchers inspiration to address the issues appropriately in further investigations.

2021 ◽  
Vol 257 ◽  
pp. 01018
Author(s):  
Hui Yang ◽  
Jiaqi Zhang ◽  
Huan He

Metal-organic framework materials have the advantages of large specific surface area, high porosity, strong adjustability of framework structure, adjustable chemical and thermal properties, etc., and can be used as ideal membrane materials. In this paper, the preparation methods and conditions of several common metal-organic framework materials, as well as how to adjust the pore size, are reviewed, and the advanced membrane treatment technology is prospected.


2021 ◽  
Author(s):  
Ning Liu ◽  
Qiaoqiao Zhang ◽  
Jingqi Guan

Seeking for low-cost and high-performance electrocatalysts for oxygen evolution reaction (OER) has drawn enormous research interest in the last few years. Reported herein is the topotactic construction of a binuclear...


Author(s):  
Jiajun Song ◽  
Jianzhong Zheng ◽  
Anneng Yang ◽  
Hong Liu ◽  
Zeyu Zhao ◽  
...  

Two-dimensional (2D) conductive metal-organic frameworks (MOFs) can not only inherit the high porosity and tailorability of traditional MOFs but also exhibit unique charge transport properties, offering promising opportunities for applications...


RSC Advances ◽  
2016 ◽  
Vol 6 (46) ◽  
pp. 40211-40218 ◽  
Author(s):  
Elham Tahmasebi ◽  
Mohammad Yaser Masoomi ◽  
Yadollah Yamini ◽  
Ali Morsali

A solid-phase extraction (SPE) sorbent, a Zn(ii) based metal–organic framework, was prepared via a simple, solventless, green and a low-cost mechanosynthesis process.


2021 ◽  
Author(s):  
Yong-Mei Wang ◽  
Xinxin Zhang ◽  
Dingyi Yang ◽  
Liting Wu ◽  
Jiaojiao Zhang ◽  
...  

Abstract The high porosity, controllable size, high surface area, and chemical versatility of a metal-organic framework (MOF) enable it a good material for a triboelectric nanogenerator (TENG), and some MOFs have been incorporated in the fabrication of TENGs. However, the understanding of effects of MOFs on the energy conversion of a TENG is still lacking, which inhibits the improvement of the performance of MOF-based TENGs. Here, UiO-66-NH2 MOFs were found to significantly increase the power of a TENG and the mechanism was carefully examined. The electron-withdrawing ability of Zr-based UiO-66-family MOFs was enhanced by designing the amino functionalized 1,4-terephthalic acid (1,4-BDC) as ligand. The chemically modified UiO-66-NH2 was found to increase the surface roughness and surface potential of a composite film with MOFs embedded in polydimethylsiloxane (PDMS) matrix. Thus the total charges due to the contact electrification increased significantly. The composite-based TENG was found to be very durable and its output voltage and current were 4 times and 60 times higher than that of a PDMS-based TENG. This work revealed an effective strategy to design MOFs with excellent electron-withdrawing abilities for high-performance TENGs.


2020 ◽  
Author(s):  
Luqman Hakim Mohd Azmi ◽  
Daryl R. Williams ◽  
Bradley P. Ladewig

<div><b>Abstract</b></div><div>A new synthesis method was developed to prepare an aluminum-based metal organic framework (MIL-96) with a larger particle size and different crystal habits. A low cost and water-soluble polymer, hydrolyzed polyacrylamide (HPAM), was added in varying quantities into the synthesis reaction to achieve >200% particle size enlargement with controlled crystal morphology. The modified adsorbent, MIL-96-RHPAM2, was systematically characterized by SEM, XRD, FTIR, BET and TGA-MS. Using activated carbon (AC) as a reference adsorbent, the effectiveness of MIL-96-RHPAM2 for perfluorooctanoic acid (PFOA) removal from water was examined. The study confirms stable morphology of hydrated MIL-96-RHPAM2 particles as well as a superior PFOA adsorption capacity (340 mg/g) despite its lower surface area, relative to standard MIL-96. MIL-96-RHPAM2 suffers from slow adsorption kinetics as the modification significantly blocks pore access. The strong adsorption of PFOA by MIL-96-RHPAM2 was associated with the formation of electrostatic bonds between the anionic carboxylate of PFOA and the amine functionality present in the HPAM backbone. Thus, the strongly held PFOA molecules in the pores of MIL-96-RHPAM2 were not easily desorbed even after eluted with a high ionic strength solvent (500 mM NaCl). Nevertheless, this simple HPAM addition strategy can still chart promising pathways to impart judicious control over adsorbent particle size and crystal shapes while the introduction of amine functionality onto the surface chemistry is simultaneously useful for enhanced PFOA removal from contaminated aqueous systems.<br></div>


2020 ◽  
Author(s):  
Luqman Hakim Mohd Azmi ◽  
Daryl R. Williams ◽  
Bradley P. Ladewig

<div><b>Abstract</b></div><div>A new synthesis method was developed to prepare an aluminum-based metal organic framework (MIL-96) with a larger particle size and different crystal habits. A low cost and water-soluble polymer, hydrolyzed polyacrylamide (HPAM), was added in varying quantities into the synthesis reaction to achieve >200% particle size enlargement with controlled crystal morphology. The modified adsorbent, MIL-96-RHPAM2, was systematically characterized by SEM, XRD, FTIR, BET and TGA-MS. Using activated carbon (AC) as a reference adsorbent, the effectiveness of MIL-96-RHPAM2 for perfluorooctanoic acid (PFOA) removal from water was examined. The study confirms stable morphology of hydrated MIL-96-RHPAM2 particles as well as a superior PFOA adsorption capacity (340 mg/g) despite its lower surface area, relative to standard MIL-96. MIL-96-RHPAM2 suffers from slow adsorption kinetics as the modification significantly blocks pore access. The strong adsorption of PFOA by MIL-96-RHPAM2 was associated with the formation of electrostatic bonds between the anionic carboxylate of PFOA and the amine functionality present in the HPAM backbone. Thus, the strongly held PFOA molecules in the pores of MIL-96-RHPAM2 were not easily desorbed even after eluted with a high ionic strength solvent (500 mM NaCl). Nevertheless, this simple HPAM addition strategy can still chart promising pathways to impart judicious control over adsorbent particle size and crystal shapes while the introduction of amine functionality onto the surface chemistry is simultaneously useful for enhanced PFOA removal from contaminated aqueous systems.<br></div>


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1063 ◽  
Author(s):  
Aisha Asghar ◽  
Naseem Iqbal ◽  
Tayyaba Noor ◽  
Majid Ali ◽  
Timothy L. Easun

Herein we report a facile, efficient, low cost, and easily scalable route for an amine-functionalized MOF (metal organic framework) synthesis. Cu-BDC⊃HMTA (HMTA = hexamethylenetetramine) has high nitrogen content and improved thermal stability when compared with the previously reported and well-studied parent Cu-BDC MOF (BDC = 1,4-benzenedicarboxylate). Cu-BDC⊃HMTA was obtained via the same synthetic method, but with the addition of HMTA in a single step synthesis. Thermogravimetric studies reveal that Cu-BDC⊃HMTA is more thermally stable than Cu-BDC MOF. Cu-BDC⊃HMTA exhibited a CO2 uptake of 21.2 wt % at 273 K and 1 bar, which compares favorably to other nitrogen-containing MOF materials.


2017 ◽  
Vol 121 (2) ◽  
pp. 1171-1181 ◽  
Author(s):  
Matthew Witman ◽  
Sanliang Ling ◽  
Andrzej Gladysiak ◽  
Kyriakos C. Stylianou ◽  
Berend Smit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document