scholarly journals The Development of a Magnesium-Releasing and Long-Term Mechanically Stable Calcium Phosphate Bone Cement Possessing Osteogenic and Immunomodulation Effects for Promoting Bone Fracture Regeneration

Author(s):  
Jun Wu ◽  
Feihong Liu ◽  
Zejin Wang ◽  
Yuan Liu ◽  
Xiaoli Zhao ◽  
...  

Bone grafts are commonly used for the treatment of critical sized bone defects. Since the supply of autologous bone is insufficient, allogeneic bone grafts have been used most of the time. However, the poor osteogenic property of allogeneic bone grafts after pretreatment results in delayed union, non-union, or even occasional deformity. Calcium phosphate cement (CPC) is one of the most promising bone filling materials due to its good biocompatibility and similar chemical components as natural bone. However, clinical applications of CPC were hampered by limited osteogenic effects, undesired immune response which results in resorption, and poor mechanical stability in vivo. Magnesium (Mg) has been proven to trigger bone regeneration through modulating cell behaviors of mesenchymal stem cells and macrophages significantly. Unfortunately, the degradation raters of pure Mg and Mg oxide are extremely fast, resulting in early collapse of Mg contained CPC. In this study, we developed a novel magnesium contained calcium phosphate bone cement (Mg-CPC), possessing long-term mechanical stability and osteogenic effects through sustained release of Mg. Furthermore, in vitro studies showed that Mg-CPC had no cytotoxic effects on hBMMSCs and macrophage RAW 264.7, and could enhance the osteogenic differentiation as determined by alkaline phosphate (ALP) activity and calcium nodule staining, as well as suppress the inflammatory as determined by expression of anti-inflammatory cytokine IL-1RA. We also found that Mg-CPC promoted new bone formation and bone maturation in vivo. These results suggest that Mg-CPC should be a good substitute material for bone grafts in clinical use.

2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Che Nor Zarida Che Seman ◽  
Zamzuri Zakaria ◽  
Zunariah Buyong ◽  
Mohd Shukrimi Awang ◽  
Ahmad Razali Md Ralib @ Md Raghib

Introduction: A novel injectable calcium phosphate bone cement (osteopaste) has been developed. Its potential application in orthopaedics as a filler of bone defects has been studied. The biomaterial was composed of tetra-calcium phosphate (TTCP) and tricalcium phosphate (TCP) powder. The aim of the present study was to evaluate the healing process of osteopaste in rabbit tibia. Materials and method: The implantation procedure was carried out on thirty-nine of New Zealand white rabbits. The in vivo bone formation was investigated by either implanting the Osteopaste, Jectos or MIIG – X3 into a critical size defect (CSD) model in the proximal tibial metaphysis. CSD without treatment served as negative control. After 1 day, 6 and 12 weeks, the rabbits were euthanized, the bone were harvested and subjected for analysis. Results: Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. There was direct contact between osteopaste material and host bone. The new bone was seen bridging the defect. Conclusion: The result showed that Osteopaste could be a new promising biomaterial for bone repair and has a potential in bone tissue engineering.


2020 ◽  
Vol 15 (5) ◽  
pp. 055038
Author(s):  
Sirirat T. Rattanachan ◽  
Nuan La-ong Srakaew ◽  
Paritat Thaitalay ◽  
Oranich Thongsri ◽  
Rawee Dangviriyakul ◽  
...  

2021 ◽  
pp. 088532822198998
Author(s):  
Karl Wu ◽  
Yu-Chun Chen ◽  
Shang M Lin ◽  
Chih-Hung Chang

This study aimed to evaluate the effectiveness of a novel calcitonin-loaded calcium phosphate composite bone cement in vitro and in vivo. The novel composite bone cements were composed of NuROs injectable bone graft substitute, type I collagen, and/or salmon calcitonin. The setting time, porosity, wettability, compressive strength, compressive modulus, and crystallographic structures of cement specimens were determined. Degradation rate, calcitonin release rate, and osteoinductivity were assessed in vitro. In addition, osteogenic effect was examined in a rabbit model of femoral defect. The results revealed that addition of collagen/calcitonin did not substantially alter physical properties and degradation rate of bone cement specimens. Calcitonin was released into culture medium in a two-phase manner. Osteogenic effect of conditioned medium derived from calcitonin containing bone cement was observed. Finally, de novo bone growth and bone mineralization across the bone defect area were observed in rabbits after implantation of composite bone cement specimens. In conclusion, this novel calcitonin-loaded composite calcium phosphate bone cement exhibits biocompatibility, bioresorbability, osteoinductivity, and osteoconductivity, which may be suitable for clinical use.


Author(s):  
National Research Mamonov ◽  
National Research Chemis ◽  
National Research Drize ◽  
National Research Proskurina ◽  
I. I. Kryazhkov ◽  
...  

Results of experimental morphologic study of tricomponent resorbable calcium phosphate bone cement (CPhC), based on tricalcium phosphate for the filling of defect as a temporary bearing resorbable matrix are presented. Study was performed on soviet chinchilla rabbits weighting 3200-3500 g. The model of critical spongy bone defect was used. At different observation terms (6, 9 and 12 months) gradual substitution of biomaterial with newly formed bone tissue from periphery to the center was observed with complete cement resorption 12 months after surgery. By mechanic characteristics newly formed bone in the defect was stronger than the surrounding trabecular one. It was stated that material possessed hemostatic effect and moderate toxicity. Peripheral bone marrow maintained its cellularity at all terms, gradually filling intertrabecular space of newly formed bone. Achieved data enable to recommend wide used of CPhC for bone defects substitution.


2014 ◽  
Vol 21 (1) ◽  
pp. 72-77
Author(s):  
National Research Center for Hematology, Moscow, RF Mamonov ◽  
National Research Center for Hematology, Moscow, RF Chemis ◽  
National Research Center for Hematology, Moscow, RF Drize ◽  
National Research Center for Hematology, Moscow, RF Proskurina ◽  
I. I Kryazhkov ◽  
...  

Results of experimental morphologic study of tricomponent resorbable calcium phosphate bone cement (CPhC), based on tricalcium phosphate for the filling of defect as a temporary bearing resorbable matrix are presented. Study was performed on soviet chinchilla rabbits weighting 3200-3500 g. The model of critical spongy bone defect was used. At different observation terms (6, 9 and 12 months) gradual substitution of biomaterial with newly formed bone tissue from periphery to the center was observed with complete cement resorption 12 months after surgery. By mechanic characteristics newly formed bone in the defect was stronger than the surrounding trabecular one. It was stated that material possessed hemostatic effect and moderate toxicity. Peripheral bone marrow maintained its cellularity at all terms, gradually filling intertrabecular space of newly formed bone. Achieved data enable to recommend wide used of CPhC for bone defects substitution.


2009 ◽  
Vol 88A (4) ◽  
pp. 880-888 ◽  
Author(s):  
Hideo Kobayashi ◽  
Takaaki Fujishiro ◽  
Stephen M. Belkoff ◽  
Naomi Kobayashi ◽  
A. Simon Turner ◽  
...  

2018 ◽  
Vol 7 (19) ◽  
pp. 1800202 ◽  
Author(s):  
Simone Mastrogiacomo ◽  
Alicja E. Kownacka ◽  
Weiqiang Dou ◽  
Benjamin P. Burke ◽  
Rafael T. M. Rosales ◽  
...  

2005 ◽  
Vol 284-286 ◽  
pp. 169-174 ◽  
Author(s):  
Hee Song ◽  
Soo Ryong Kim ◽  
S.J. Jung ◽  
J.K. Lee ◽  
Hee Joong Kim ◽  
...  

Silicon containing self setting bone cement has been prepared by adding silicon containing hydroxyapatite whisker to obtain a biomaterial having an improved resorption properties. Silicon containing calcium phosphate bone cement was composed of a-TCP: TeCP: DCPD: Si-HA whisker with a NH4H2PO4 as a setting liquid. From the XRD analysis, it was confirmed that calcium deficient hydroxyapatite phase appeared when it immersed in PBS solution. The dissolution rate of silicon containing calcium phosphate cement was measured in PBS solution and showed high dissolution rate. Based on in-vivo test, silicon containing self setting bone cement can be considered a useful material for bone bonding materials.


Sign in / Sign up

Export Citation Format

Share Document