scholarly journals The Roles of lncRNA in Myocardial Infarction: Molecular Mechanisms, Diagnosis Biomarkers, and Therapeutic Perspectives

Author(s):  
Luhan Xie ◽  
Qingqing Zhang ◽  
Jun Mao ◽  
Jun Zhang ◽  
Lianhong Li

In recent years, long non-coding RNAs (lncRNAs) have been demonstrated to be associated with many physiological and pathological processes in cardiac. Recent studies have shown that lncRNAs are expressed dynamically in cardiovascular diseases and participate in regulation through a variety of molecular mechanisms, which have become a critical part of the epigenetic and transcriptional regulatory pathways in heart development, as well as the initiation and progress of myocardial infarction. In this review, we summarized some current research about the roles of lncRNAs in heart development and myocardial infarction, with the emphasis on molecular mechanisms of pathological responses, and highlighted their functions in the secondary changes of myocardial infarction. We also discussed the possibility of lncRNAs as novel diagnostic biomarkers and potential therapeutic targets for myocardial infarction.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Fuwen Huang ◽  
Jingting Mai ◽  
Jingwei Chen ◽  
Yinying He ◽  
Xiaojun Chen

AbstractThe myocardial infarction is the main cause of morbidity and mortality in cardiovascular diseases around the world. Although the timely and complete reperfusion via Percutaneous Coronary Intervention (PCI) or thrombolysis have distinctly decreased the mortality of myocardial infarction, reperfusion itself may lead to supererogatory irreversible myocardial injury and heart function disorders, namely ischemia-reperfusion (I/R) injury. Extensive studies have indicated that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play important roles in the progress of myocardial I/R injury, which is closely correlative with cardiomyocytes autophagy. Moreover, autophagy plays an important role in maintaining homeostasis and protecting cells in the myocardial ischemia reperfusion and cardiomyocyte hypoxia-reoxygenation (H/R) progress. In this review, we first introduced the biogenesis and functions of ncRNAs, and subsequently summarized the roles and relevant molecular mechanisms of ncRNAs regulating autophagy in myocardial I/R injury. We hope that this review in addition to develop a better understanding of the physiological and pathological roles of ncRNAs, can also lay a foundation for the therapies of myocardial I/R injury, and even for other related cardiovascular diseases.


2018 ◽  
Vol 19 (9) ◽  
pp. 2754 ◽  
Author(s):  
Marek Vecera ◽  
Jiri Sana ◽  
Radim Lipina ◽  
Martin Smrcka ◽  
Ondrej Slaby

Gliomas are the most common malignancies of the central nervous system. Because of tumor localization and the biological behavior of tumor cells, gliomas are characterized by very poor prognosis. Despite significant efforts that have gone into glioma research in recent years, the therapeutic efficacy of available treatment options is still limited, and only a few clinically usable diagnostic biomarkers are available. More and more studies suggest non-coding RNAs to be promising diagnostic biomarkers and therapeutic targets in many cancers, including gliomas. One of the largest groups of these molecules is long non-coding RNAs (lncRNAs). LncRNAs show promising potential because of their unique tissue expression patterns and regulatory functions in cancer cells. Understanding the role of lncRNAs in gliomas may lead to discovery of the novel molecular mechanisms behind glioma biological features. It may also enable development of new solutions to overcome the greatest obstacles in therapy of glioma patients. In this review, we summarize the current knowledge about lncRNAs and their involvement in the molecular pathology of gliomas. A conclusion follows that these RNAs show great potential to serve as powerful diagnostic, prognostic, and predictive biomarkers as well as therapeutic targets.


NAR Cancer ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Keisuke Katsushima ◽  
George Jallo ◽  
Charles G Eberhart ◽  
Ranjan J Perera

Abstract Long non-coding RNAs (lncRNAs) have been found to be central players in the epigenetic, transcriptional and post-transcriptional regulation of gene expression. There is an accumulation of evidence on newly discovered lncRNAs, their molecular interactions and their roles in the development and progression of human brain tumors. LncRNAs can have either tumor suppressive or oncogenic functions in different brain cancers, making them attractive therapeutic targets and biomarkers for personalized therapy and precision diagnostics. Here, we summarize the current state of knowledge of the lncRNAs that have been implicated in brain cancer pathogenesis, particularly in gliomas and medulloblastomas. We discuss their epigenetic regulation as well as the prospects of using lncRNAs as diagnostic biomarkers and therapeutic targets in patients with brain tumors.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yuanyuan Liang ◽  
Lin Wang

Alzheimer’s disease (AD) is the most common cause of senile dementia. Although AD research has made important breakthroughs, the pathogenesis of this disease remains unclear, and specific AD diagnostic biomarkers and therapeutic strategies are still lacking. Recent studies have demonstrated that neuroinflammation is involved in AD pathogenesis and is closely related to other health effects. MicroRNAs (miRNAs) are a class of endogenous short sequence non-coding RNAs that indirectly inhibit translation or directly degrade messenger RNA (mRNA) by specifically binding to its 3′ untranslated region (UTR). Several broadly expressed miRNAs including miR-21, miR-146a, and miR-155, have now been shown to regulate microglia/astrocytes activation. Other miRNAs, including miR-126 and miR-132, show a progressive link to the neuroinflammatory signaling. Therefore, further studies on these inflamma-miRNAs may shed light on the pathological mechanisms of AD. The differential expression of inflamma-miRNAs (such as miR-29a, miR-125b, and miR-126-5p) in the peripheral circulation may respond to AD progression, similar to inflammation, and therefore may become potential diagnostic biomarkers for AD. Moreover, inflamma-miRNAs could also be promising therapeutic targets for AD treatment. This review provides insights into the role of inflamma-miRNAs in AD, as well as an overview of general inflamma-miRNA biology, their implications in pathophysiology, and their potential roles as biomarkers and therapeutic targets.


2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Damian Kołat ◽  
Żaneta Kałuzińska ◽  
Andrzej K. Bednarek ◽  
Elżbieta Płuciennik

Abstract The Activator Protein 2 (AP-2) transcription factor (TF) family is vital for the regulation of gene expression during early development as well as carcinogenesis process. The review focusses on the AP-2α and AP-2γ proteins and their dualistic regulation of gene expression in the process of carcinogenesis. Both AP-2α and AP-2γ influence a wide range of physiological or pathological processes by regulating different pathways and interacting with diverse molecules, i.e. other proteins, long non-coding RNAs (lncRNA) or miRNAs. This review summarizes the newest information about the biology of two, AP-2α and AP-2γ, TFs in the carcinogenesis process. We emphasize that these two proteins could have either oncogenic or suppressive characteristics depending on the type of cancer tissue or their interaction with specific molecules. They have also been found to contribute to resistance and sensitivity to chemotherapy in oncological patients. A better understanding of molecular network of AP-2 factors and other molecules may clarify the atypical molecular mechanisms occurring during carcinogenesis, and may assist in the recognition of new diagnostic biomarkers.


2017 ◽  
Vol 44 (3) ◽  
pp. 948-966 ◽  
Author(s):  
Tesfaye Worku ◽  
Dinesh Bhattarai ◽  
Duncan Ayers ◽  
Kai Wang ◽  
Chen Wang ◽  
...  

Long non-coding RNAs (lncRNAs), a class of non-coding transcripts, have recently been emerging with heterogeneous molecular actions, adding a new layer of complexity to gene-regulation networks in tumorigenesis. LncRNAs are considered important factors in several ovarian cancer histotypes, although few have been identified and characterized. Owing to their complexity and the lack of adapted molecular technology, the roles of most lncRNAs remain mysterious. Some lncRNAs have been reported to play functional roles in ovarian cancer and can be used as classifiers for personalized medicine. The intrinsic features of lncRNAs govern their various molecular mechanisms and provide a wide range of platforms to design different therapeutic strategies for treating cancer at a particular stage. Although we are only beginning to understand the functions of lncRNAs and their interactions with microRNAs (miRNAs) and proteins, the expanding literature indicates that lncRNA-miRNA interactions could be useful biomarkers and therapeutic targets for ovarian cancer. In this review, we discuss the genetic variants of lncRNAs, heterogeneous mechanisms of actions of lncRNAs in ovarian cancer tumorigenesis, and drug resistance. We also highlight the recent developments in using lncRNAs as potential prognostic and diagnostic biomarkers. Lastly, we discuss potential approaches for linking lncRNAs to future gene therapies, and highlight future directions in the field of ovarian cancer research.


2021 ◽  
Vol 22 (6) ◽  
pp. 3280
Author(s):  
Dana Dvorská ◽  
Dušan Braný ◽  
Marcela Ňachajová ◽  
Erika Halašová ◽  
Zuzana Danková

Breast cancer is very heterogenous and the most common gynaecological cancer, with various factors affecting its development. While its impact on human lives and national health budgets is still rising in almost all global areas, many molecular mechanisms affecting its onset and development remain unclear. Conventional treatments still prove inadequate in some aspects, and appropriate molecular therapeutic targets are required for improved outcomes. Recent scientific interest has therefore focused on the non-coding RNAs roles in tumour development and their potential as therapeutic targets. These RNAs comprise the majority of the human transcript and their broad action mechanisms range from gene silencing to chromatin remodelling. Many non-coding RNAs also have altered expression in breast cancer cell lines and tissues, and this is often connected with increased proliferation, a degraded extracellular environment, and higher endothelial to mesenchymal transition. Herein, we summarise the known abnormalities in the function and expression of long non-coding RNAs, Piwi interacting RNAs, small nucleolar RNAs and small nuclear RNAs in breast cancer, and how these abnormalities affect the development of this deadly disease. Finally, the use of RNA interference to suppress breast cancer growth is summarised.


Author(s):  
Ting Jiang ◽  
Yulin Zhu ◽  
Yingchuan Peng ◽  
Wanna Zhang ◽  
Haijun Xiao

Abstract Much progress has been made in understanding the environmental and hormonal systems regulating winter diapause. However, transcriptional regulation of summer diapause is still largely unknown, making it difficult to understand an all-around regulation profile of seasonal adaptation. To bridge this gap, comparison RNA-seq to profile the transcriptome and to examine differential gene expression profiles between non-diapause, summer diapause, and winter diapause groups were performed. A total number of 113 million reads were generated and assembled into 79,117 unigenes, with 37,492 unigenes categorized into 58 functional gene ontology groups, 25 clusters of orthologous group categories, and 256 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG analysis mapped 2108 differentially expressed genes to 48 and 67 pathways for summer and winter diapauses, respectively. Enrichment statistics showed that 11 identical pathways similarly overlapped in the top 20 enriched functional groups both related to summer and winter diapauses. We also identified 35 key candidate genes for universal and differential functions related to summer and winter diapause preparation. Furthermore, we identified some genes involved in the signaling and metabolic pathways that may be the key drivers to integrate environmental signals into the summer and winter diapause preparation. The current study provided valuable insights into global molecular mechanisms underpinning diapause preparation.


2020 ◽  
Vol 10 ◽  
Author(s):  
Na Gao ◽  
Yueheng Li ◽  
Jing Li ◽  
Zhengfan Gao ◽  
Zhenzhen Yang ◽  
...  

The development and application of whole genome sequencing technology has greatly broadened our horizons on the capabilities of long non-coding RNAs (lncRNAs). LncRNAs are more than 200 nucleotides in length and lack protein-coding potential. Increasing evidence indicates that lncRNAs exert an irreplaceable role in tumor initiation, progression, as well as metastasis, and are novel molecular biomarkers for diagnosis and prognosis of cancer patients. Furthermore, lncRNAs and the pathways they influence might represent promising therapeutic targets for a number of tumors. Here, we discuss the recent advances in understanding of the specific regulatory mechanisms of lncRNAs. We focused on the signal, decoy, guide, and scaffold functions of lncRNAs at the epigenetic, transcription, and post-transcription levels in cancer cells. Additionally, we summarize the research strategies used to investigate the roles of lncRNAs in tumors, including lncRNAs screening, lncRNAs characteristic analyses, functional studies, and molecular mechanisms of lncRNAs. This review will provide a short but comprehensive description of the lncRNA functions in tumor development and progression, thus accelerating the clinical implementation of lncRNAs as tumor biomarkers and therapeutic targets.


2019 ◽  
Vol 20 (8) ◽  
pp. 1977 ◽  
Author(s):  
Cynthia Van der Hauwaert ◽  
François Glowacki ◽  
Nicolas Pottier ◽  
Christelle Cauffiez

Fibrosis, or tissue scarring, is defined as the excessive, persistent and destructive accumulation of extracellular matrix components in response to chronic tissue injury. Renal fibrosis represents the final stage of most chronic kidney diseases and contributes to the progressive and irreversible decline in kidney function. Limited therapeutic options are available and the molecular mechanisms governing the renal fibrosis process are complex and remain poorly understood. Recently, the role of non-coding RNAs, and in particular microRNAs (miRNAs), has been described in kidney fibrosis. Seminal studies have highlighted their potential importance as new therapeutic targets and innovative diagnostic and/or prognostic biomarkers. This review will summarize recent scientific advances and will discuss potential clinical applications as well as future research directions.


Sign in / Sign up

Export Citation Format

Share Document