scholarly journals The Interaction Between Long Non-Coding RNAs and Cancer-Associated Fibroblasts in Lung Cancer

Author(s):  
Wenqi Ti ◽  
Jianbo Wang ◽  
Yufeng Cheng

Despite great advances in research and treatment, lung cancer is still one of the most leading causes of cancer-related deaths worldwide. Evidence is mounting that dynamic communication network in the tumor microenvironment (TME) play an integral role in tumor initiation and development. Cancer-associated fibroblasts (CAFs), which promote tumor growth and metastasis, are the most important stroma component in the tumor microenvironment. Consequently, in-depth identification of relevant molecular mechanisms and biomarkers related to CAFs will increase understanding of tumor development process, which is of great significance for precise treatment of lung cancer. With the development of sequencing technologies such as microarray and next-generation sequencing, lncRNAs without protein-coding ability have been found to act as communicators between tumor cells and CAFs. LncRNAs participate in the activation of normal fibroblasts (NFs) to CAFs. Moreover, activated CAFs can influence the gene expression and secretion characteristics of cells through lncRNAs, enhancing the malignant biological process in tumor cells. In addition, lncRNA-loaded exosomes are considered to be another important form of crosstalk between tumor cells and CAFs. In this review, we focus on the interaction between tumor cells and CAFs mediated by lncRNAs in the lung cancer microenvironment, and discuss the analysis of biological function and molecular mechanism. Furthermore, it contributes to paving a novel direction for the clinical treatment of lung cancer.

2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Dalia Martinez-Marin ◽  
Courtney Jarvis ◽  
Thomas Nelius ◽  
Stéphanie Filleur

Abstract Macrophages have been recognized as the main inflammatory component of the tumor microenvironment. Although often considered as beneficial for tumor growth and disease progression, tumor-associated macrophages have also been shown to be detrimental to the tumor depending on the tumor microenvironment. Therefore, understanding the molecular interactions between macrophages and tumor cells in relation to macrophages functional activities such as phagocytosis is critical for a better comprehension of their tumor-modulating action. Still, the characterization of these molecular mechanisms in vivo remains complicated due to the extraordinary complexity of the tumor microenvironment and the broad range of tumor-associated macrophage functions. Thus, there is an increasing demand for in vitro methodologies to study the role of cell–cell interactions in the tumor microenvironment. In the present study, we have developed live co-cultures of macrophages and human prostate tumor cells to assess the phagocytic activity of macrophages using a combination of Confocal and Nomarski Microscopy. Using this model, we have emphasized that this is a sensitive, measurable, and highly reproducible functional assay. We have also highlighted that this assay can be applied to multiple cancer cell types and used as a selection tool for a variety of different types of phagocytosis agonists. Finally, combining with other studies such as gain/loss of function or signaling studies remains possible. A better understanding of the interactions between tumor cells and macrophages may lead to the identification of new therapeutic targets against cancer.


2020 ◽  
Author(s):  
Bin Xue ◽  
Chen-Hua Chuang ◽  
Haydn M. Prosser ◽  
Cesar Seigi Fuziwara ◽  
Claudia Chan ◽  
...  

AbstractLung adenocarcinoma, the most prevalent lung cancer subtype, is characterized by its high propensity to metastasize. Despite the importance of metastasis in lung cancer mortality, its underlying cellular and molecular mechanisms remain largely elusive. Here, we identified miR-200 miRNAs as potent suppressors for lung adenocarcinoma metastasis. miR-200 expression is specifically repressed in mouse metastatic lung adenocarcinomas, and miR-200 decrease strongly correlates with poor patient survival. Consistently, deletion of mir-200c/141 in the KrasLSL-G12D/+; Trp53flox/flox lung adenocarcinoma mouse model significantly promoted metastasis, generating a desmoplastic tumor stroma highly reminiscent of metastatic human lung cancer. miR-200 deficiency in lung cancer cells promotes the proliferation and activation of adjacent cancer-associated fibroblasts (CAFs), which in turn elevates the metastatic potential of cancer cells. miR-200 regulates the functional interaction between cancer cells and CAFs, at least in part, by targeting Notch ligand Jagged1 and Jagged2 in cancer cells and inducing Notch activation in adjacent CAFs. Hence, the interaction between cancer cells and CAFs constitutes an essential mechanism to promote metastatic potential.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Fengzhou Li ◽  
Shilei Zhao ◽  
Tao Guo ◽  
Jinxiu Li ◽  
Chundong Gu

Purpose.Leptin is a nutritional cytokine encoded by the obesity gene whose concentration in the tumor microenvironment is closely related to the occurrence and progression of cancer. However, previous evidence has suggested that there is no clear relationship between serum leptin concentrations and lung cancer progression. Cancer-associated fibroblasts (CAFs), the most abundant component of the tumor microenvironment in a variety of solid tumors, were recently reported to produce leptin. Therefore, it was inferred that leptin is most likely to affect non-small-cell lung cancer (NSCLC) through an autocrine and paracrine mechanism. In the current study, we investigated the paracrine effect and mechanism of leptin produced by CAFs on NSCLC by establishing a novel in vitro cell coculture system.Methods.A noncontact coculture device was designed and made by 3D printing. CAFs and paired normal lung fibroblasts (NLFs) from 5 patients were successfully isolated and cocultured with two NSCLC cell lines in a coculture system. The background expression of leptin was detected by western blot. The in situ expression of leptin and its receptor (Ob-R) in NSCLC tissues and paired normal lung tissues was analyzed by immunohistochemistry. Furthermore, we downregulated the expression of leptin in CAFs and assessed changes in its promotion on NSCLC cells in the coculture system. Finally, changes in the phosphorylation of ERK1/2 and AKT were examined to investigate the molecular mechanisms responsible for the paracrine promotion of NSCLC cells by leptin.Results.Leptin was overexpressed in nearly all five primary CAF lines compared with its expression in paired NLFs. IHC staining showed that the expression of leptin was high in NSCLC cells, slightly lower in CAF, and negative in normal lung tissue. Ob-R was strongly expressed in NSCLC cells. The ability of A549 and H1299 cells to proliferate and migrate was enhanced by high leptin levels in both the cocultured fibroblasts and the culture medium. Furthermore, western blot assays suggested that the MAPK/ERK1/2 and PI3K/AKT signaling pathways were activated by leptin produced by CAFs, which demonstrated that the functions of paracrine leptin in NSCLC are as those of the serum leptin to other cancers.Conclusion.Leptin produced by CAF promotes proliferation and migration of NSCLC cells probably via PI3K/AKT and MAPK/ERK1/2 signaling pathways in a paracrine manner.


2020 ◽  
Vol 11 ◽  
Author(s):  
Shahid Hussain ◽  
Bo Peng ◽  
Mathew Cherian ◽  
Jonathan W. Song ◽  
Dinesh K. Ahirwar ◽  
...  

The intricate interplay between malignant cells and host cellular and non-cellular components play crucial role in different stages of tumor development, progression, and metastases. Tumor and stromal cells communicate to each other through receptors such as integrins and secretion of signaling molecules like growth factors, cytokines, chemokines and inflammatory mediators. Chemokines mediated signaling pathways have emerged as major mechanisms underlying multifaceted roles played by host cells during tumor progression. In response to tumor stimuli, host cells-derived chemokines further activates signaling cascades that support the ability of tumor cells to invade surrounding basement membrane and extra-cellular matrix. The host-derived chemokines act on endothelial cells to increase their permeability and facilitate tumor cells intravasation and extravasation. The tumor cells-host neutrophils interaction within the vasculature initiates chemokines driven recruitment of inflammatory cells that protects circulatory tumor cells from immune attack. Chemokines secreted by tumor cells and stromal immune and non-immune cells within the tumor microenvironment enter the circulation and are responsible for formation of a “pre-metastatic niche” like a “soil” in distant organs whereby circulating tumor cells “seed’ and colonize, leading to formation of metastatic foci. Given the importance of host derived chemokines in cancer progression and metastases several drugs like Mogamulizumab, Plerixafor, Repertaxin among others are part of ongoing clinical trial which target chemokines and their receptors against cancer pathogenesis. In this review, we focus on recent advances in understanding the complexity of chemokines network in tumor microenvironment, with an emphasis on chemokines secreted from host cells. We especially summarize the role of host-derived chemokines in different stages of metastases, including invasion, dissemination, migration into the vasculature, and seeding into the pre-metastatic niche. We finally provide a brief description of prospective drugs that target chemokines in different clinical trials against cancer.


2018 ◽  
Vol 47 (6) ◽  
pp. 2534-2543 ◽  
Author(s):  
Changjun He ◽  
Kaibin Zhu ◽  
Xue Bai ◽  
Yingbin Li ◽  
Dawei Sun ◽  
...  

Background/Aims: Assistance with tumor-associated vascularization is needed for the growth and invasion of non-small cell lung cancer (NSCLC). Recently, it was shown that placental growth factor (PLGF) expressed by NSCLC cells had a critical role in promoting the metastasis of NSCLC cells. However, the underlying molecular mechanisms remain elusive. Methods: Here, we first established a NSCLC model in mice that allows us not only to isolate tumor cells from non-tumor cells in the tumor, but also to trace tumor cells in living animals. Levels of PLGF, its unique receptor Flt-1, as well as transforming growth factor β1 (TGFβ1) was examined in tumor cells and tumor-associated macrophages (TAM) by RT-qPCR. A transwell well co-culture system and HUVEC assay were applied to study the crosstalk between NSCLC cells and TAM. Results: NSCLC cells produced and secreted PLGF to signal to tumor-associated macrophages (TAM) through surface expression of Flt-1 on macrophages. In a transwell co-culture system, PLGF secreted by NSCLC cells triggered macrophage polarization to a TAM subtype that promote growth of NSCLC cells. Moreover, polarized TAM seemed to secrete TGFβ1 to enhance the growth of endothelial cells in a HUVEC assay. Conclusion: The cross-talk between TAM and NSCLC cells via PLGF/Flt-1 and TGFβ receptor signaling may promote the growth and vascularization of NSCLC.


2020 ◽  
Vol 21 (17) ◽  
pp. 6024
Author(s):  
Lyna Kara-Terki ◽  
Lucas Treps ◽  
Christophe Blanquart ◽  
Delphine Fradin

Extracellular vesicles (EVs), such as exosomes, are critical mediators of intercellular communication between tumor cells and other cells located in the microenvironment but also in more distant sites. Exosomes are small EVs that can carry a variety of molecules, such as lipids, proteins, and non-coding RNA, especially microRNAs (miRNAs). In thoracic cancers, including lung cancers and malignant pleural mesothelioma, EVs contribute to the immune-suppressive tumor microenvironment and to tumor growth and metastasis. In this review, we discuss the recent understanding of how exosomes behave in thoracic cancers and how and why they are promising liquid biomarkers for diagnosis, prognosis, and therapy, with a special focus on exosomal miRNAs.


2020 ◽  
Vol 35 (1_suppl) ◽  
pp. 8-11 ◽  
Author(s):  
Paola Nisticò ◽  
Gennaro Ciliberto

Our view of cancer biology radically shifted from a “cancer-cell-centric” vision to a view of cancer as an organ disease. The concept that genetic and/or epigenetic alterations, at the basis of cancerogenesis, are the main if not the exclusive drivers of cancer development and the principal targets of therapy, has now evolved to include the tumor microenvironment in which tumor cells can grow, proliferate, survive, and metastasize only within a favorable environment. The interplay between cancer cells and the non-cellular and cellular components of the tumor microenvironment plays a fundamental role in tumor development and evolution both at the primary site and at the level of metastasis. The shape of the tumor cells and tumor mass is the resultant of several contrasting forces either pro-tumoral or anti-tumoral which have at the level of the tumor microenvironment their battle field. This crucial role of tumor microenvironment composition in cancer progression also dictates whether immunotherapy with immune checkpoint inhibitor antibodies is going to be efficacious. Hence, tumor microenvironment deconvolution has become of great relevance in order to identify biomarkers predictive of efficacy of immunotherapy. In this short paper we will briefly review the relationship between inflammation and cancer, and will summarize in 10 short points the key concepts learned so far and the open challenges to be solved.


2017 ◽  
Vol 95 (6) ◽  
pp. 679-685 ◽  
Author(s):  
Ana Jerónimo ◽  
Gonçalo Rodrigues ◽  
Filipe Vilas-Boas ◽  
Gabriel G. Martins ◽  
Ana Bagulho ◽  
...  

Tumor angiogenesis is required for tumor development and growth, and is regulated by several factors including ROS. H2O2 is a ROS with an important role in cell signaling, but how H2O2 regulates tumor angiogenesis is still poorly understood. We have xenografted tumor cells with altered levels of H2O2 by catalase overexpression into zebrafish embryos to study redox-induced tumor neovascularization. We found that vascular recruitment and invasion were impaired if catalase was overexpressed. In addition, the overexpression of catalase altered the transcriptional levels of several angiogenesis-related factors in tumor cells, including TIMP-3 and THBS1. These two anti-angiogenic factors were found to be H2O2-regulated by two different mechanisms: TIMP-3 expression in a cell-autonomous manner; and, THBS1 expression that was non-cell-autonomous. Our work shows that intracellular H2O2 regulates the expression of angiogenic factors and the formation of a vessel network. Understanding the molecular mechanisms that govern this multifunctional effect of H2O2 on tumor angiogenesis could be important for the development of more efficient anti-angiogenic therapies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Gurcan Gunaydin

Cancer associated fibroblasts (CAFs) and tumor associated macrophages (TAMs) are among the most important and abundant players of the tumor microenvironment. CAFs as well as TAMs are known to play pivotal supportive roles in tumor growth and progression. The number of CAF or TAM cells is mostly correlated with poor prognosis. Both CAFs and TAMs are in a reciprocal communication with the tumor cells in the tumor milieu. In addition to such interactions, CAFs and TAMs are also involved in a dynamic and reciprocal interrelationship with each other. Both CAFs and TAMs are capable of altering each other’s functions. Here, the current understanding of the distinct mechanisms about the complex interplay between CAFs and TAMs are summarized. In addition, the consequences of such a mutual relationship especially for tumor progression and tumor immune evasion are highlighted, focusing on the synergistic pleiotropic effects. CAFs and TAMs are crucial components of the tumor microenvironment; thus, they may prove to be potential therapeutic targets. A better understanding of the tri-directional interactions of CAFs, TAMs and cancer cells in terms of tumor progression will pave the way for the identification of novel theranostic cues in order to better target the crucial mechanisms of carcinogenesis.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jianbo Zheng ◽  
Xin Guo ◽  
Yuka Nakamura ◽  
Xiaolei Zhou ◽  
Reimon Yamaguchi ◽  
...  

Peroxiredoxin 4 (PRDX4), initially reported as an antioxidant, is overexpressed in lung cancer and participates in its progression. However, its role in the urethane-induced lung tumor model is undetermined. The aim of this study was to investigate the effect of PRDX4 overexpression on carcinogen-induced lung tumor development. Human PRDX4 overexpression transgenic (Tg) mice (hPRDX4+/+) and non-Tg mice were intraperitoneally injected with urethane to induce lung tumor. After 6 months, tumor formation was compared between groups and possible mechanisms for the difference in tumor development were investigated. The serum and lung PRDX4 expressions were enhanced after urethane stimulation in Tg mice. Both the average number of tumors (≥0.5 mm) and tumor diameter per mouse in the Tg group were significantly larger than in non-Tg controls, while body weight was lower in the Tg group. Compared with non-Tg controls, tumor cell proliferation was enhanced, while tumor cell apoptosis was suppressed in Tg mice. Systemic oxidative stress and oxidative stress in lung tumors were inhibited by PRDX4 overexpression. The balance of prooxidant enzymes and antioxidant enzymes was also shifted to a decreased level in Tg tumor. In lung tumor tissue, the density of microvessel penetrated into tumor was higher in the Tg group; macrophage infiltration was enhanced in Tg tumors, while there was no difference in T lymphocyte infiltration; the expressions of cytokines, including interleukin-1 beta (IL-1β) and matrix metallopeptidase 9 (MMP9), were elevated in Tg tumors, which resulted from enhanced phosphorylation of nuclear factor-κB p65 (NF-κB p65) and c-Jun, respectively. In conclusion, PRDX4 overexpression modulated tumor microenvironment and promoted tumor development in the mouse urethane-induced lung cancer model.


Sign in / Sign up

Export Citation Format

Share Document