scholarly journals Aberrant Phase Separation of FUS Leads to Lysosome Sequestering and Acidification

Author(s):  
Franziska Trnka ◽  
Christian Hoffmann ◽  
Han Wang ◽  
Roberto Sansevrino ◽  
Branislava Rankovic ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that leads to the death of upper and lower motor neurons. While most cases of ALS are sporadic, some of the familial forms of the disease are caused by mutations in the gene encoding for the RNA-binding protein FUS. Under physiological conditions, FUS readily phase separates into liquid-like droplets in vivo and in vitro. ALS-associated mutations interfere with this process and often result in solid-like aggregates rather than fluid condensates. Yet, whether cells recognize and triage aberrant condensates remains poorly understood, posing a major barrier to the development of novel ALS treatments. Using a combination of ALS-associated FUS mutations, optogenetic manipulation of FUS condensation, chemically induced stress, and pH-sensitive reporters of organelle acidity, we systematically characterized the cause-effect relationship between the material state of FUS condensates and the sequestering of lysosomes. From our data, we can derive three conclusions. First, regardless of whether we use wild-type or mutant FUS, expression levels (i.e., high concentrations) play a dominant role in determining the fraction of cells having soluble or aggregated FUS. Second, chemically induced FUS aggregates recruit LAMP1-positive structures. Third, mature, acidic lysosomes accumulate only at FUS aggregates but not at liquid-condensates. Together, our data suggest that lysosome-degradation machinery actively distinguishes between fluid and solid condensates. Unraveling these aberrant interactions and testing strategies to manipulate the autophagosome-lysosome axis provides valuable clues for disease intervention.

2015 ◽  
pp. MCB.00074-15 ◽  
Author(s):  
Gaella Boulanger ◽  
Marie Cibois ◽  
Justine Viet ◽  
Alexis Fostier ◽  
Stéphane Deschamps ◽  
...  

CELF1 is a multifunctional RNA-binding protein that controls several aspects of RNA fate. The targeted disruption of theCelf1gene in mice causes male infertility due to impaired spermiogenesis, the post-meiotic differentiation of male gametes. Here, we investigated the molecular reasons that underlie this testicular phenotype. By measuring sex hormone levels, we detected low concentrations of testosterone inCelf1-null mice. We investigated the effect ofCelf1disruption on the expression levels of steroidogenic enzyme genes, and we observed thatCyp19a1was upregulated.Cyp19a1encodes aromatase, which transforms testosterone into estradiol. Administration of testosterone or the aromatase inhibitor Letrozole partly rescued the spermiogenesis defects, indicating that a lack of testosterone associated with excessive aromatase contributes to the testicular phenotype. In vivo and in vitro interaction assays demonstrated that CELF1 binds toCyp19a1mRNA, and reporter assays supported the conclusion that CELF1 directly repressesCyp19a1translation. We conclude that CELF1 downregulatesCyp19a1/Aromatasepost-transcriptionally to achieve high concentrations of testosterone compatible with spermiogenesis completion. We discuss the implications of these findings with respect to reproductive defects in men, including patients suffering from isolated hypogonadotropic hypogonadism and myotonic dystrophy type I.


2021 ◽  
Vol 7 (30) ◽  
pp. eabf8660
Author(s):  
Nicol Birsa ◽  
Agnieszka M. Ule ◽  
Maria Giovanna Garone ◽  
Brian Tsang ◽  
Francesca Mattedi ◽  
...  

FUsed in Sarcoma (FUS) is a multifunctional RNA binding protein (RBP). FUS mutations lead to its cytoplasmic mislocalization and cause the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Here, we use mouse and human models with endogenous ALS-associated mutations to study the early consequences of increased cytoplasmic FUS. We show that in axons, mutant FUS condensates sequester and promote the phase separation of fragile X mental retardation protein (FMRP), another RBP associated with neurodegeneration. This leads to repression of translation in mouse and human FUS-ALS motor neurons and is corroborated in vitro, where FUS and FMRP copartition and repress translation. Last, we show that translation of FMRP-bound RNAs is reduced in vivo in FUS-ALS motor neurons. Our results unravel new pathomechanisms of FUS-ALS and identify a novel paradigm by which mutations in one RBP favor the formation of condensates sequestering other RBPs, affecting crucial biological functions, such as protein translation.


2021 ◽  
Author(s):  
Brigid K Jensen ◽  
Kevin J McAvoy ◽  
Nicolette M Heinsinger ◽  
Angelo C Lepore ◽  
Hristelina Ilieva ◽  
...  

Genetic mutations that cause Amyotrophic Lateral Sclerosis (ALS), a progressively lethal motor neuron disease, are commonly found in ubiquitously expressed genes. In addition to direct defects within motor neurons, growing evidence suggests that dysfunction of non-neuronal cells is also an important driver of disease. Previously, we demonstrated that mutations in DNA/RNA binding protein Fused in Sarcoma (FUS) induce neurotoxic phenotypes in astrocytes in vitro, via activation of the NF-κB pathway and release of pro-inflammatory cytokine TNFα. Here, we developed an intraspinal cord injection model to test whether astrocyte-specific expression of ALS-causative FUSR521G variant (mtFUS) causes neuronal damage in vivo. We show that mtFUS expression causes TNFα upregulation, motor function deficits, and spinal motor neuron loss. We further demonstrate a lack of phenotype in TNFα knockout animals expressing mtFUS, and prevention of neurodegeneration in mtFUS-transduced animals through administration of TNFα neutralizing antibodies. Together, these studies strengthen evidence that astrocytes contribute to disease in ALS, establish that FUS-ALS astrocytes induce pathogenic changes to motor neurons in vivo, and provide insights identifying FUS-ALS specific potential therapeutic targets.


2020 ◽  
Vol 48 (8) ◽  
pp. 4463-4479 ◽  
Author(s):  
Xiang Yi Kong ◽  
Erik Sebastian Vik ◽  
Meh Sameen Nawaz ◽  
Natalia Berges ◽  
Tuva Børresdatter Dahl ◽  
...  

Abstract Endonuclease V (EndoV) is a conserved inosine-specific ribonuclease with unknown biological function. Here, we present the first mouse model lacking EndoV, which is viable without visible abnormalities. We show that endogenous murine EndoV cleaves inosine-containing RNA in vitro, nevertheless a series of experiments fails to link an in vivo function to processing of such transcripts. As inosine levels and adenosine-to-inosine editing often are dysregulated in hepatocellular carcinoma (HCC), we chemically induced HCC in mice. All mice developed liver cancer, however, EndoV−/− tumors were significantly fewer and smaller than wild type tumors. Opposed to human HCC, adenosine deaminase mRNA expression and site-specific editing were unaltered in our model. Loss of EndoV did not affect editing levels in liver tumors, however mRNA expression of a selection of cancer related genes were reduced. Inosines are also found in certain tRNAs and tRNAs are cleaved during stress to produce signaling entities. tRNA fragmentation was dysregulated in EndoV−/− livers and apparently, inosine-independent. We speculate that the inosine-ribonuclease activity of EndoV is disabled in vivo, but RNA binding allowed to promote stabilization of transcripts or recruitment of proteins to fine-tune gene expression. The EndoV−/− tumor suppressive phenotype calls for related studies in human HCC.


Author(s):  
Nicol Birsa ◽  
Agnieszka M Ule ◽  
Maria Giovanna Garone ◽  
Brian Tsang ◽  
Francesca Mattedi ◽  
...  

Mutations in the RNA binding protein (RBP) FUS cause amyotrophic lateral sclerosis (ALS) and result in its nuclear depletion and cytoplasmic mislocalisation, with cytoplasmic gain of function thought to be crucial in pathogenesis. Here, we show that expression of mutant FUS at physiological levels drives translation inhibition in both mouse and human motor neurons. Rather than acting directly on the translation machinery, we find that mutant FUS forms cytoplasmic condensates that promote the phase separation of FMRP, another RBP associated with neurodegeneration and robustly involved in translation regulation. FUS and FMRP co-partition and repress translation in vitro. In our in vivo model, FMRP RNA targets are depleted from ribosomes. Our results identify a novel paradigm by which FUS mutations favour the condensed state of other RBPs, impacting on crucial biological functions, such as protein translation.


2020 ◽  
Vol 318 (1) ◽  
pp. G1-G9 ◽  
Author(s):  
Richard A. Jacobson ◽  
Kiedo Wienholts ◽  
Ashley J. Williamson ◽  
Sara Gaines ◽  
Sanjiv Hyoju ◽  
...  

Perforations, anastomotic leak, and subsequent intra-abdominal sepsis are among the most common and feared complications of invasive interventions in the colon and remaining intestinal tract. During physiological healing, tissue protease activity is finely orchestrated to maintain the strength and integrity of the submucosa collagen layer in the wound. We (Shogan, BD et al. Sci Trans Med 7: 286ra68, 2015.) have previously demonstrated in both mice and humans that the commensal microbe Enterococcus faecalis selectively colonizes wounded colonic tissues and disrupts the healing process by amplifying collagenolytic matrix-metalloprotease activity toward excessive degradation. Here, we demonstrate for the first time, to our knowledge, a novel collagenolytic virulence mechanism by which E. faecalis is able to bind and locally activate the human fibrinolytic protease plasminogen (PLG), a protein present in high concentrations in healing colonic tissue. E. faecalis-mediated PLG activation leads to supraphysiological collagen degradation; in this study, we demonstrate this concept both in vitro and in vivo. This pathoadaptive response can be mitigated with the PLG inhibitor tranexamic acid (TXA) in a fashion that prevents clinically significant complications in validated murine models of both E. faecalis- and Pseudomonas aeruginosa-mediated colonic perforation. TXA has a proven clinical safety record and is Food and Drug Administration approved for topical application in invasive procedures, albeit for the prevention of bleeding rather than infection. As such, the novel pharmacological effect described in this study may be translatable to clinical trials for the prevention of infectious complications in colonic healing. NEW & NOTEWORTHY This paper presents a novel mechanism for virulence in a commensal gut microbe that exploits the human fibrinolytic system and its principle protease, plasminogen. This mechanism is targetable by safe and effective nonantibiotic small molecules for the prevention of infectious complications in the healing gut.


2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Saikat Bhattacharya ◽  
Michaella J. Levy ◽  
Ning Zhang ◽  
Hua Li ◽  
Laurence Florens ◽  
...  

AbstractHeterogeneous ribonucleoproteins (hnRNPs) are RNA binding molecules that are involved in key processes such as RNA splicing and transcription. One such hnRNP protein, hnRNP L, regulates alternative splicing (AS) by binding to pre-mRNA transcripts. However, it is unclear what factors contribute to hnRNP L-regulated AS events. Using proteomic approaches, we identified several key factors that co-purify with hnRNP L. We demonstrate that one such factor, the histone methyltransferase SETD2, specifically interacts with hnRNP L in vitro and in vivo. This interaction occurs through a previously uncharacterized domain in SETD2, the SETD2-hnRNP Interaction (SHI) domain, the deletion of which, leads to a reduced H3K36me3 deposition. Functionally, SETD2 regulates a subset of hnRNP L-targeted AS events. Our findings demonstrate that SETD2, by interacting with Pol II as well as hnRNP L, can mediate the crosstalk between the transcription and the splicing machinery.


Author(s):  
Zizhen Si ◽  
Lei Yu ◽  
Haoyu Jing ◽  
Lun Wu ◽  
Xidi Wang

Abstract Background Long non-coding RNAs (lncRNA) are reported to influence colorectal cancer (CRC) progression. Currently, the functions of the lncRNA ZNF561 antisense RNA 1 (ZNF561-AS1) in CRC are unknown. Methods ZNF561-AS1 and SRSF6 expression in CRC patient samples and CRC cell lines was evaluated through TCGA database analysis, western blot along with real-time PCR. SRSF6 expression in CRC cells was also examined upon ZNF561-AS1 depletion or overexpression. Interaction between miR-26a-3p, miR-128-5p, ZNF561-AS1, and SRSF6 was examined by dual luciferase reporter assay, as well as RNA binding protein immunoprecipitation (RIP) assay. Small interfering RNA (siRNA) mediated knockdown experiments were performed to assess the role of ZNF561-AS1 and SRSF6 in the proliferative actives and apoptosis rate of CRC cells. A mouse xenograft model was employed to assess tumor growth upon ZNF561-AS1 knockdown and SRSF6 rescue. Results We find that ZNF561-AS1 and SRSF6 were upregulated in CRC patient tissues. ZNF561-AS1 expression was reduced in tissues from treated CRC patients but upregulated in CRC tissues from relapsed patients. SRSF6 expression was suppressed and enhanced by ZNF561-AS1 depletion and overexpression, respectively. Mechanistically, ZNF561-AS1 regulated SRSF6 expression by sponging miR-26a-3p and miR-128-5p. ZNF561-AS1-miR-26a-3p/miR-128-5p-SRSF6 axis was required for CRC proliferation and survival. ZNF561-AS1 knockdown suppressed CRC cell proliferation and triggered apoptosis. ZNF561-AS1 depletion suppressed the growth of tumors in a model of a nude mouse xenograft. Similar observations were made upon SRSF6 depletion. SRSF6 overexpression reversed the inhibitory activities of ZNF561-AS1 in vivo, as well as in vitro. Conclusion In summary, we find that ZNF561-AS1 promotes CRC progression via the miR-26a-3p/miR-128-5p-SRSF6 axis. This study reveals new perspectives into the role of ZNF561-AS1 in CRC.


1992 ◽  
Vol 20 (1) ◽  
pp. 146-163
Author(s):  
Francis H. Kruszewski ◽  
Laura H. Hearn ◽  
Kyle T. Smith ◽  
Janice J. Teal ◽  
Virginia C. Gordon ◽  
...  

465 cosmetic product formulations and raw ingredients were evaluated with the EYTEX™ system to determine the potential of this in vitro alternative for identifying eye irritation potential. The EYTEX™ system is a non-animal, biochemical procedure developed by Ropak Laboratories, Irvine, CA, that was designed to approximate the Draize rabbit eye irritation assay for the evaluation of ocular irritation. Avon Products Inc. provided all the test samples, which included over 30 different product types and represented a wide range of eye irritancy. All the EYTEX™ protocols available at the time of this study were used. Samples were evaluated double-blind with both the membrane partition assay (MPA) and the rapid membrane assay (RMA). When appropriate, the standard assay (STD) and the alkaline membrane assay (AMA) were used, as well as specific, documented protocol modifications. EYTEX™ results were correlated with rabbit eye irritation data which was obtained from the historical records of Avon Products Inc. A positive agreement of EYTEX™ results with the in vivo assay was demonstrated by an overall concordance of 80%. The assay error was 20%, of which 18% was due to an overestimation of sample irritancy (false positives) and 2% was attributed to underestimation (false negatives). Overestimation error in this study was due in part to the inability of the protocols to accurately classify test samples with very low irritation potential. Underestimation of sample irritancy was generally associated with ethoxylated materials and high concentrations of specific types of surfactants. 100% sensitivity and 85% predictability were described by the data, indicating the efficiency of EYTEX™ in identifying known irritants. A specificity rate of 39% showed the EYTEX™ assay to be weak in discerning non-irritants. However, the EYTEX™ protocols used in this study were not designed to identify non-irritants. A compatibility rate of 99% proved the effectiveness of the EYTEX™ assay in accommodating a diversity of product types. The EYTEX™ system protocols, when used appropriately, can provide a conservative means of assessing the irritant potential of most cosmetic formulations and their ingredients.


Sign in / Sign up

Export Citation Format

Share Document