scholarly journals Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction

Author(s):  
Christina L. Hansen ◽  
Francisco Pelegri

The differentiation of primordial germ cells (PGCs) occurs during early embryonic development and is critical for the survival and fitness of sexually reproducing species. Here, we review the two main mechanisms of PGC specification, induction, and preformation, in the context of four model vertebrate species: mouse, axolotl, Xenopus frogs, and zebrafish. We additionally discuss some notable molecular characteristics shared across PGC specification pathways, including the shared expression of products from three conserved germline gene families, DAZ (Deleted in Azoospermia) genes, nanos-related genes, and DEAD-box RNA helicases. Then, we summarize the current state of knowledge of the distribution of germ cell determination systems across kingdom Animalia, with particular attention to vertebrate species, but include several categories of invertebrates – ranging from the “proto-vertebrate” cephalochordates to arthropods, cnidarians, and ctenophores. We also briefly highlight ongoing investigations and potential lines of inquiry that aim to understand the evolutionary relationships between these modes of specification.

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3099
Author(s):  
Aline Fernanda de Souza ◽  
Fabiana Fernandes Bressan ◽  
Naira Caroline Godoy Pieri ◽  
Ramon Cesar Botigelli ◽  
Tamas Revay ◽  
...  

Turner syndrome (TS) is a genetic disorder in females with X Chromosome monosomy associated with highly variable clinical features, including premature primary gonadal failure leading to ovarian dysfunction and infertility. The mechanism of development of primordial germ cells (PGCs) and their connection with ovarian failure in TS is poorly understood. An in vitro model of PGCs from TS would be beneficial for investigating genetic and epigenetic factors that influence germ cell specification. Here we investigated the potential of reprogramming peripheral mononuclear blood cells from TS women (PBMCs-TS) into iPSCs following in vitro differentiation in hPGCLCs. All hiPSCs-TS lines demonstrated pluripotency state and were capable of differentiation into three embryonic layers (ectoderm, endoderm, and mesoderm). The PGCLCs-TS recapitulated the initial germline development period regarding transcripts and protein marks, including the epigenetic profile. Overall, our results highlighted the feasibility of producing in vitro models to help the understanding of the mechanisms associated with germ cell formation in TS.


Development ◽  
2001 ◽  
Vol 128 (18) ◽  
pp. 3609-3621 ◽  
Author(s):  
Kimberly D. Tremblay ◽  
N. Ray Dunn ◽  
Elizabeth J. Robertson

The Smad proteins are important intracellular mediators of the transforming growth factor β (TGFβ) family of secreted growth factors. Smad1 is an effector of signals provided by the bone morphogenetic protein (BMP) sub-group of TGFβ molecules. To understand the role of Smad1 in mouse development, we have generated a Smad1 loss-of-function allele using homologous recombination in ES cells. Smad1−/− embryos die by 10.5 dpc because they fail to connect to the placenta. Mutant embryos are first recognizable by 7.0 dpc, owing to a characteristic localized outpocketing of the visceral endoderm at the posterior embryonic/extra-embryonic junction, accompanied by a dramatic twisting of the epiblast and nascent mesoderm. Chimera analysis reveals that these two defects are attributable to a requirement for Smad1 in the extra-embryonic tissues. By 7.5 dpc, Smad1-deficient embryos show a marked impairment in allantois formation. By contrast, the chorion overproliferates, is erratically folded within the extra-embryonic space and is impeded in proximal migration. BMP signals are known to be essential for the specification and proliferation of primordial germ cells. We find a drastic reduction of primordial germ cells in Smad1-deficient embryos, suggesting an essential role for Smad1-dependent signals in primordial germ cell specification. Surprisingly, despite the key involvement of BMP signaling in tissues of the embryo proper, Smad1-deficient embryos develop remarkably normally. An examination of the expression domains of Smad1, Smad5 and Smad8 in early mouse embryos show that, while Smad1 is uniquely expressed in the visceral endoderm at 6.5 dpc, in other tissues Smad1 is co-expressed with Smad5 and/or Smad8. Collectively, these data have uncovered a unique function for Smad1 signaling in coordinating the growth of extra-embryonic structures necessary to support development within the uterine environment.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 1462 ◽  
Author(s):  
Florence Marlow

Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration.


2017 ◽  
Vol 65 (3) ◽  
pp. 460-475.e6 ◽  
Author(s):  
Deqing Hu ◽  
Xin Gao ◽  
Kaixiang Cao ◽  
Marc A. Morgan ◽  
Gloria Mas ◽  
...  

2008 ◽  
Vol 20 (8) ◽  
pp. 900 ◽  
Author(s):  
Yoshiaki Nakamura ◽  
Yasuhiro Yamamoto ◽  
Fumitake Usui ◽  
Yusuke Atsumi ◽  
Yohei Ito ◽  
...  

The aim of the present study was to improve the efficiency of endogenous primordial germ cell (PGC) depletion and to increase the ratio of donor PGCs in the gonads of recipient chicken embryos. A sustained-release emulsion was prepared by emulsifying equal amounts of Ca2+- and Mg2+-free phosphate-buffered saline containing 10% busulfan solubilised in N,N-dimethylformamide and sesame oil, using a filter. Then, 75 μg per 50 μL busulfan sustained-release emulsion was injected into the yolk. To determine the depletion and repopulation of PGCs in the gonads after 6 days incubation, whole-mount immunostaining was performed. The busulfan sustained-release emulsion significantly reduced the number of endogenous PGCs compared with control (P < 0.05). Moreover, the busulfan sustained-release emulsion significantly depleted endogenous PGCs compared with other previously reported busulfan delivery systems (P < 0.05), but with less variation, suggesting that the sustained-release emulsion delivered a consistent amount of busulfan to the developing chicken embryos. The PGC transfer study showed that the proportion of donor PGCs in the gonads of busulfan sustained-release emulsion-treated embryos after 6 days incubation increased 28-fold compared with control. In conclusion, the results demonstrate that exogenous PGCs are capable of migrating and settling in gonads from which endogenous PGCs have been removed using a busulfan sustained-release emulsion.


2016 ◽  
Vol 28 (2) ◽  
pp. 207
Author(s):  
J. Galiguis ◽  
C. E. Pope ◽  
C. Dumas ◽  
G. Wang ◽  
R. A. MacLean ◽  
...  

As precursors to germline stem cells and gametes, there are many potential applications for primordial germ cells (PGC). Primordial germ cell-like cells have been generated from mouse embryonic stem cells and induced pluripotent stem cells, which subsequently were used to produce functional spermatozoa, oocytes, and healthy offspring (Hayashi et al. 2012 Science 338(6109), 971–975). Applying this approach to generate sperm and oocytes of endangered species is an appealing prospect. Detection of molecular markers associated with PGC is essential to optimizing the process of PGC induction. In the current study, in vitro-derived domestic cat embryos were assessed at various developmental stages to characterise the expression of markers related to the specification process of cat PGC. In vivo-matured, IVF oocytes were cultured until Days 7, 9, and 12 post-insemination. Then, embryos were assessed by RT-qPCR to determine relative transcript abundance of the pluripotency markers NANOG, POU5F1, and SOX2; the epiblast marker DNMT3B; the primitive endoderm marker GATA4; the PGC marker PRDM14; and the germ cell marker VASA; RPS19 was used as the internal reference gene. To validate the qPCR results, fibroblasts served as the negative control cells, whereas spermatogonial stem cells (SSC) served as the positive control cells for GATA4, PRDM14, and VASA. Total mRNA were isolated using the Cells-to-cDNA™ II Kit (Ambion/Thermo Fisher Scientific, Waltham, MA, USA) from either pools of 2 to 6 embryos or ~25 000 fibroblasts/SSC. A minimum of 2 biological replicates for each sample type was analysed, with transcript abundance detected in 2 technical replicates by SYBR Green chemistry. Student’s t-tests were performed on the ΔCts for statistical analysis. PRDM14, specific to the germ cell lineage, was detected as early as Day 7, suggesting the presence of PGC precursor cells. Compared with their levels at Day 7, PRDM14 expression was 0.34-fold lower in SSC (P < 0.05), whereas expression of VASA and GATA4 were 1964-fold and 144-fold higher, respectively (P < 0.05). This seems to emphasise the relative importance of PRDM14 in pre-germ cell stages. In general, all genes analysed were up-regulated from Day 7 to Day 9. This up-regulation was statistically significant for SOX2 and GATA4 (P < 0.05). Relative to that at Day 9, all transcripts were relatively less abundant at Day 12 (P < 0.05 for NANOG, POU5F1, SOX2, DNMT3B, and PRDM14). The data suggest that PGC specification takes place near Day 9, with peak specification activity concluding by Day 12. Although much needs be explored about PGC specification in the cat before applying induction and in vitro germ cell production techniques, these findings represent the first step towards a new potential strategy for preserving endangered and threatened felids.


Reproduction ◽  
2003 ◽  
pp. 667-675 ◽  
Author(s):  
T Mayanagi ◽  
R Kurosawa ◽  
K Ohnuma ◽  
A Ueyama ◽  
K Ito ◽  
...  

Primordial germ cells are important cells for the study of germ cell lineage. It has proved difficult to obtain highly purified primordial germ cells for preparation of a specific antibody. In the present study, a new method for purifying mouse primordial germ cells was developed using a Nycodenz gradient. Furthermore, the polyclonal anti-mouse primordial germ cells IgG derived from mouse primordial germ cells was prepared. As this IgG reacted only with primordial germ cells obtained at day 12.5 after mating, this antibody appeared to recognize the stage-specific antigen of primordial germ cells. One reason that a continuous primordial germ cell marker has not been obtained is because the purity of the primordial germ cells used has been too low to prepare the antibody. This new method represents a significant improvement in the purification of primordial germ cells; it is simpler than previous methods, and produced mouse primordial germ cells with a purity of more than 95%. In addition, the separation reagent Nycodenz is non-toxic and achieved separation of primordial germ cells without attachment of antibodies against the primordial germ cell membrane surface. This new purification method and stage-specific antibody will be useful for the analysis of the mechanisms of primordial germ cell migration.


Stem Cells ◽  
2014 ◽  
Vol 33 (1) ◽  
pp. 289-300 ◽  
Author(s):  
Yasuka L. Yamaguchi ◽  
Satomi S. Tanaka ◽  
Maho Kumagai ◽  
Yuka Fujimoto ◽  
Takeshi Terabayashi ◽  
...  

2021 ◽  
Author(s):  
Matus Vojtek ◽  
Ian Chambers

Retroelement silencing factor 1 (Resf1) interacts with the key regulators of mouse embryonic stem cells (ESCs) Oct4 and Nanog, and its absence results in sterility of mice. However, the function of Resf1 in ESCs and germ line specification is poorly understood. In this study, we used Resf1 knockout cell lines to determine the requirements of RESF1 for ESCs self-renewal and for in vitro specification of ESCs into primordial germ cell-like cells (PGCLCs). We found that deletion of Resf1 in ESCs cultured in serum and LIF reduces self-renewal potential whereas episomal expression of RESF1 has a modest positive effect on ESC self-renewal. In addition, RESF1 is not required for the capacity of NANOG and its downstream target ESRRB to drive self-renewal in the absence of LIF. However, Resf1 deletion reduces efficiency of PGCLC differentiation in vitro. These results identify Resf1 as a novel player in the regulation of pluripotent stem cells and germ cell specification.


Sign in / Sign up

Export Citation Format

Share Document