scholarly journals RNA Secondary Structurome Revealed Distinct Thermoregulation in Plasmodium falciparum

Author(s):  
Yanwei Qi ◽  
Yuhong Zhang ◽  
Quankai Mu ◽  
Guixing Zheng ◽  
Mengxin Zhang ◽  
...  

The development of Plasmodium parasites, a causative agent of malaria, requests two hosts and the completion of 11 different parasite stages during development. Therefore, an efficient and fast response of parasites to various complex environmental changes, such as ambient temperature, pH, ions, and nutrients, is essential for parasite development and survival. Among many of these environmental changes, temperature is a decisive factor for parasite development and pathogenesis, including the thermoregulation of rRNA expression, gametogenesis, and parasite sequestration in cerebral malaria. However, the exact mechanism of how Plasmodium parasites rapidly respond and adapt to temperature change remains elusive. As a fundamental and pervasive regulator of gene expression, RNA structure can be a specific mechanism for fine tuning various biological processes. For example, dynamic and temperature-dependent changes in RNA secondary structures can control the expression of different gene programs, as shown by RNA thermometers. In this study, we applied the in vitro and in vivo transcriptomic-wide secondary structurome approach icSHAPE to measure parasite RNA structure changes with temperature alteration at single-nucleotide resolution for ring and trophozoite stage parasites. Among 3,000 probed structures at different temperatures, our data showed structural changes in the global transcriptome, such as S-type rRNA, HRPII gene, and the erythrocyte membrane protein family. When the temperature drops from 37°C to 26°C, most of the genes in the trophozoite stage cause significantly more changes to the RNA structure than the genes in the ring stage. A multi-omics analysis of transcriptome data from RNA-seq and RNA structure data from icSHAPE reveals that the specific RNA secondary structure plays a significant role in the regulation of transcript expression for parasites in response to temperature changes. In addition, we identified several RNA thermometers (RNATs) that responded quickly to temperature changes. The possible thermo-responsive RNAs in Plasmodium falciparum were further mapped. To this end, we identified dynamic and temperature-dependent RNA structural changes in the P. falciparum transcriptome and performed a comprehensive characterization of RNA secondary structures over the course of temperature stress in blood stage development. These findings not only contribute to a better understanding of the function of the RNA secondary structure but may also provide novel targets for efficient vaccines or drugs.

Author(s):  
Yanwei Qi ◽  
Yuhong Zhang ◽  
Guixing Zheng ◽  
Bingxia Chen ◽  
Mengxin Zhang ◽  
...  

It is widely accepted that the structure of RNA plays important roles in a number of biological processes, such as polyadenylation, splicing, and catalytic functions. Dynamic changes in RNA structure are able to regulate the gene expression programme and can be used as a highly specific and subtle mechanism for governing cellular processes. However, the nature of most RNA secondary structures in Plasmodium falciparum has not been determined. To investigate the genome-wide RNA secondary structural features at single-nucleotide resolution in P. falciparum, we applied a novel high-throughput method utilizing the chemical modification of RNA structures to characterize these structures. Structural data from parasites are in close agreement with the known 18S ribosomal RNA secondary structures of P. falciparum and can help to predict the in vivo RNA secondary structure of a total of 3,396 transcripts in the ring-stage and trophozoite-stage developmental cycles. By parallel analysis of RNA structures in vivo and in vitro during the Plasmodium parasite ring-stage and trophozoite-stage intraerythrocytic developmental cycles, we identified some key regulatory features. Recent studies have established that the RNA structure is a ubiquitous and fundamental regulator of gene expression. Our study indicate that there is a critical connection between RNA secondary structure and mRNA abundance during the complex biological programme of P. falciparum. This work presents a useful framework and important results, which may facilitate further research investigating the interactions between RNA secondary structure and the complex biological programme in P. falciparum. The RNA secondary structure characterized in this study has potential applications and important implications regarding the identification of RNA structural elements, which are important for parasite infection and elucidating host-parasite interactions and parasites in the environment.


2013 ◽  
Vol 325-326 ◽  
pp. 1551-1554
Author(s):  
Yi Qi

In this paper, we present an improved BPSO to predict RNA secondary structure to improve the performance with two new strategies. First one is to reduce the searching space of PSO through super stem set construction. Second is to modify the general BPSO updating process to settle stem permutation and combination problems. The experimental results show that the new method is effective for RNA structure prediction in terms of sensitivity and specificity by different sequence datasets including simple pseudoknot.


2019 ◽  
Vol 15 (6) ◽  
pp. 20190275 ◽  
Author(s):  
Jessica L. Waite ◽  
Eunho Suh ◽  
Penelope A. Lynch ◽  
Matthew B. Thomas

The rate of malaria transmission is strongly determined by parasite development time in the mosquito, known as the extrinsic incubation period (EIP), since the quicker parasites develop, the greater the chance that the vector will survive long enough for the parasite to complete development and be transmitted. EIP is known to be temperature-dependent but this relationship is surprisingly poorly characterized. There is a single degree-day model for EIP of Plasmodium falciparum that derives from a limited number of poorly controlled studies conducted almost a century ago. Here, we show that the established degree-day model greatly underestimates the rate of development of P. falciparum in both Anopheles stephensi and An. gambiae mosquitoes at temperatures in the range of 17–20°C. We also show that realistic daily temperature fluctuation further speeds parasite development. These novel results challenge one of the longest standing models in malaria biology and have potentially important implications for understanding the impacts of future climate change.


2008 ◽  
Vol 82 (23) ◽  
pp. 11824-11836 ◽  
Author(s):  
Matthew Davis ◽  
Selena M. Sagan ◽  
John P. Pezacki ◽  
David J. Evans ◽  
Peter Simmonds

ABSTRACT By the analysis of thermodynamic RNA secondary structure predictions, we previously obtained evidence for evolutionarily conserved large-scale ordering of RNA virus genomes (P. Simmonds, A. Tuplin, and D. J. Evans, RNA 10:1337-1351, 2004). Genome-scale ordered RNA structure (GORS) was widely distributed in many animal and plant viruses, much greater in extent than RNA structures required for viral translation or replication, but in mammalian viruses was associated with host persistence. To substantiate the existence of large-scale RNA structure differences between viruses, a large set of alignments of mammalian RNA viruses and rRNA sequences as controls were examined by thermodynamic methods (to calculate minimum free energy differences) and by algorithmically independent RNAz and Pfold methods. These methods produced generally concordant results and identified substantial differences in the degrees of evolutionarily conserved, sequence order-dependent RNA secondary structure between virus genera and groups. A probe hybridization accessibility assay was used to investigate the physical nature of GORS. Transcripts of hepatitis C virus (HCV), hepatitis G virus/GB virus-C (HGV/GBV-C), and murine norovirus, which are predicted to be structured, were largely inaccessible to hybridization in solution, in contrast to the almost universal binding of probes to a range of unstructured virus transcripts irrespective of G+C content. Using atomic force microscopy, HCV and HGV/GBV-C RNA was visualized as tightly compacted prolate spheroids, while under the same experimental conditions the predicted unstructured poliovirus and rubella virus RNA were pleomorphic and had extensively single-stranded RNA on deposition. Bioinformatic and physical characterization methods both identified fundamental differences in the configurations of viral genomic RNA that may modify their interactions with host cell defenses and their ability to persist.


2019 ◽  
Author(s):  
Winston R. Becker ◽  
Inga Jarmoskaite ◽  
Kalli Kappel ◽  
Pavanapuresan P. Vaidyanathan ◽  
Sarah K. Denny ◽  
...  

AbstractNearest-neighbor (NN) rules provide a simple and powerful quantitative framework for RNA structure prediction that is strongly supported for canonical Watson-Crick duplexes from a plethora of thermodynamic measurements. Predictions of RNA secondary structure based on nearest-neighbor (NN) rules are routinely used to understand biological function and to engineer and control new functions in biotechnology. However, NN applications to RNA structural features such as internal and terminal loops rely on approximations and assumptions, with sparse experimental coverage of the vast number of possible sequence and structural features. To test to what extent NN rules accurately predict thermodynamic stabilities across RNAs with non-WC features, we tested their predictions using a quantitative high-throughput assay platform, RNA-MaP. Using a thermodynamic assay with coupled protein binding, we carried out equilibrium measurements for over 1000 RNAs with a range of predicted secondary structure stabilities. Our results revealed substantial scatter and systematic deviations between NN predictions and observed stabilities. Solution salt effects and incorrect or omitted loop parameters contribute to these observed deviations. Our results demonstrate the need to independently and quantitatively test NN computational algorithms to identify their capabilities and limitations. RNA-MaP and related approaches can be used to test computational predictions and can be adapted to obtain experimental data to improve RNA secondary structure and other prediction algorithms.Significance statementRNA secondary structure prediction algorithms are routinely used to understand, predict and design functional RNA structures in biology and biotechnology. Given the vast number of RNA sequence and structural features, these predictions rely on a series of approximations, and independent tests are needed to quantitatively evaluate the accuracy of predicted RNA structural stabilities. Here we measure the stabilities of over 1000 RNA constructs by using a coupled protein binding assay. Our results reveal substantial deviations from the RNA stabilities predicted by popular algorithms, and identify factors contributing to the observed deviations. We demonstrate the importance of quantitative, experimental tests of computational RNA structure predictions and present an approach that can be used to routinely test and improve the prediction accuracy.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
P. Simmonds

ABSTRACT The ultimate outcome of the coronavirus disease 2019 (COVID-19) pandemic is unknown and is dependent on a complex interplay of its pathogenicity, transmissibility, and population immunity. In the current study, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was investigated for the presence of large-scale internal RNA base pairing in its genome. This property, termed genome-scale ordered RNA structure (GORS) has been previously associated with host persistence in other positive-strand RNA viruses, potentially through its shielding effect on viral RNA recognition in the cell. Genomes of SARS-CoV-2 were remarkably structured, with minimum folding energy differences (MFEDs) of 15%, substantially greater than previously examined viruses such as hepatitis C virus (HCV) (MFED of 7 to 9%). High MFED values were shared with all coronavirus genomes analyzed and created by several hundred consecutive energetically favored stem-loops throughout the genome. In contrast to replication-associated RNA structure, GORS was poorly conserved in the positions and identities of base pairing with other sarbecoviruses—even similarly positioned stem-loops in SARS-CoV-2 and SARS-CoV rarely shared homologous pairings, indicative of more rapid evolutionary change in RNA structure than in the underlying coding sequences. Sites predicted to be base paired in SARS-CoV-2 showed less sequence diversity than unpaired sites, suggesting that disruption of RNA structure by mutation imposes a fitness cost on the virus that is potentially restrictive to its longer evolution. Although functionally uncharacterized, GORS in SARS-CoV-2 and other coronaviruses represents important elements in their cellular interactions that may contribute to their persistence and transmissibility. IMPORTANCE The detection and characterization of large-scale RNA secondary structure in the genome of SARS-CoV-2 indicate an extraordinary and unsuspected degree of genome structural organization; this could be effectively visualized through a newly developed contour plotting method that displays positions, structural features, and conservation of RNA secondary structure between related viruses. Such RNA structure imposes a substantial evolutionary cost; paired sites showed greater restriction in diversity and represent a substantial additional constraint in reconstructing its molecular epidemiology. Its biological relevance arises from previously documented associations between possession of structured genomes and persistence, as documented for HCV and several other RNA viruses infecting humans and mammals. Shared properties potentially conferred by large-scale structure in SARS-CoV-2 include increasing evidence for prolonged infections and induced immune dysfunction that prevents development of protective immunity. The findings provide an additional element to cellular interactions that potentially influences the natural history of SARS-CoV-2, its pathogenicity, and its transmission.


Author(s):  
Longjian Gao ◽  
Chengzhen Xu ◽  
Wangan Song ◽  
Feng Xiao ◽  
Xiaomin Wu ◽  
...  

Background: With increasing applications and development of high-throughput sequencing, knowledge of the primary structure of RNA has expanded exponentially. Moreover, the function of RNA is determined by the secondary or higher RNA structure, and similar structures are related to similar functions, such as the secondary clover structure of tRNA. Therefore, RNA structure alignment is an important subject in computational biology and bioinformatics to accurately predict function. However, the traditional RNA structure alignment algorithms have some drawbacks such as high complexity and easy loss of secondary structure information. Objective: To study RNA secondary structure alignment according to the shortcomings of existing secondary structure alignment algorithms and the characteristics of RNA secondary structure. Method: We propose a new digital sequence RNA structure representation algorithm named “DSARna” . Then based on a dynamic programming algorithm, the scoring matrix and binary path matrix are simultaneously constructed. The backtracking path is identified in the path matrix, and the optimal result is predicted according to the path length. Conclusions: Upon comparison with the existing SimTree algorithm through experimental analysis, the proposed method showed higher accuracy and could ensure that the structural information is not easily lost in terms of improved specificity, sensitivity, and the Matthews correlation coefficient.


2020 ◽  
Vol 15 (2) ◽  
pp. 135-143
Author(s):  
Sha Shi ◽  
Xin-Li Zhang ◽  
Le Yang ◽  
Wei Du ◽  
Xian-Li Zhao ◽  
...  

Background: The prediction of RNA secondary structure using optimization algorithms is key to understand the real structure of an RNA. Evolutionary algorithms (EAs) are popular strategies for RNA secondary structure prediction. However, compared to most state-of-the-art software based on DPAs, the performances of EAs are a bit far from satisfactory. Objective: Therefore, a more powerful strategy is required to improve the performances of EAs when applied to the prediciton of RNA secondary structures. Methods: The idea of quantum computing is introduced here yielding a new strategy to find all possible legal paired-bases with the constraint of minimum free energy. The sate of a stem pool with size N is encoded as a population of QGA, which is represented by N quantum bits but not classical bits. The updating of populations is accomplished by so-called quantum crossover operations, quantum mutation operations and quantum rotation operations. Results: The numerical results show that the performances of traditional EAs are significantly improved by using QGA with regard to not only prediction accuracy and sensitivity but also complexity. Moreover, for RNA sequences with middle-short length, QGA even improves the state-of-art software based on DPAs in terms of both prediction accuracy and sensitivity. Conclusion: This work sheds an interesting light on the applications of quantum computing on RNA structure prediction.


1983 ◽  
Vol 97 (3) ◽  
pp. 795-802 ◽  
Author(s):  
J Gruenberg ◽  
D R Allred ◽  
I W Sherman

The nature of the surface deformations of erythrocytes infected with the human malaria parasite Plasmodium falciparum was analyzed using scanning electron microscopy at two stages of the 48-h parasite maturation cycle. Infected cells bearing trophozoite-stage parasites (24-36 h) had small protrusions (knobs), with diameters varying from 160 to 110 nm, and a density ranging from 10 to 35 knobs X micron-2. When parasites were fully mature (schizont stage, 40-44 h), knob size decreased (100-70 nm), whereas density increased (45-70 knobs X micron-2). Size and density of the knobs varied inversely, suggesting that knob production (a) occurred throughout intraerythrocytic parasite development from trophozoite to schizont and (b) was related to dynamic changes of the erythrocyte membrane. Variation in the distribution of the knobs over the red cell surface was observed during parasite maturation. At the early trophozoite stage of parasite development, knobs appeared to be formed in particular domains of the cell surface. As the density of knobs increased and they covered the entire cell surface, their lateral distribution was dispersive (more-than-random); this was particularly evident at the schizont stage. Regional surface patterns of knobs (rows, circles) were seen throughout parasite development. The nature of the dynamic changes that occurred at the red cell surface during knob formation, as well as the nonrandom distribution of knobs, suggested that the red cell cytoskeleton may have played a key role in knob formation and patterning.


2001 ◽  
Vol 45 (9) ◽  
pp. 2553-2558 ◽  
Author(s):  
Ivan Cruz Moura ◽  
Gerhard Wunderlich ◽  
Maria L. Uhrig ◽  
Alicia S. Couto ◽  
Valnice J. Peres ◽  
...  

ABSTRACT Isoprenylation is an essential protein modification in eukaryotic cells. Herein, we report that in Plasmodium falciparum, a number of proteins were labeled upon incubation of intraerythrocytic forms with either [3H]farnesyl pyrophosphate or [3H]geranylgeranyl pyrophosphate. By thin-layer chromatography, we showed that attached isoprenoids are partially modified to dolichol and other, uncharacterized, residues, confirming active isoprenoid metabolism in this parasite. Incubation of blood-stage P. falciparum treated with the isoprenylation inhibitor limonene significantly decreased the parasites' progression from the ring stage to the trophozoite stage and at 1.22 mM, 50% of the parasites died after the first cycle. Using Ras- and Rap-specific monoclonal antibodies, putative Rap and Ras proteins of P. falciparum were immunoprecipitated. Upon treatment with 0.5 mM limonene, isoprenylation of these proteins was significantly decreased, possibly explaining the observed arrest of parasite development.


Sign in / Sign up

Export Citation Format

Share Document