scholarly journals Folic Acid Attenuates High-Fat Diet-Induced Osteoporosis Through the AMPK Signaling Pathway

Author(s):  
Haiting He ◽  
Yaxi Zhang ◽  
Yue Sun ◽  
Yanwei Zhang ◽  
Jingjing Xu ◽  
...  

Objective: Obesity caused by a high-fat diet (HFD) will expand adipose tissue and cause chronic low-grade systemic inflammation, leading to osteoporosis. Folic acid (FA) is a water-soluble vitamin that plays an essential role in regulating blood lipids and antioxidants. However, the effects and underlying mechanisms of FA in osteoporosis induced by an HFD remain poorly understood. This study aimed to investigate the effect of FA on bone health by using HFD-induced osteoporosis mice.Materials and Methods: Mice were fed a normal diet, HFD or an HFD supplemented with FA (20 μg/ml in drinking water) for 16 weeks. Throughout the 16 weeks study period, the rats were weighed once every week. GTT, ITT and lipid indexes were detected to evaluate the effects of FA on lipid metabolism in the HFD-fed mice. Morphological and structural changes of the femur and tibial bone were observed using micro-CT, HE staining and bone conversion parameters. The expression of MDA, SOD and inflammatory factors were detected to evaluate the effects of FA on oxidative stress and inflammatory response in the HFD-fed mice. Quantitative real-time PCR and Western blot (WB) were used to investigate the AMPK signaling pathway.Results: After the intervention of FA, the body fat rate of obese mice was reduced, and related metabolic disorders such as insulin resistance, hyperlipidemia, and systemic inflammation were alleviated. In correlation with those modifications, FA attenuated bone loss and improved bone microarchitecture, accompanied the number of osteoclasts and adipocytes decreased. Furthermore, FA promoted the phosphorylation of AMPK, thereby promoting the expression of Carnitine palmitoyltransferase 1 (CPT1), nuclear factor erythroid-2 related factor 2 (Nrf2) and antioxidant enzymes.Conclusion: These findings suggest that FA may modulate lipid metabolism and oxidative stress responses activating the AMPK signaling pathway, thereby alleviating HFD-induced osteoporosis. The results from our study provide experimental evidence to prevent HFD-induced osteoporosis.

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2202
Author(s):  
Micaelle Oliveira de Luna Freire ◽  
Luciana Caroline Paulino do Nascimento ◽  
Kataryne Árabe Rimá de Oliveira ◽  
Alisson Macário de Oliveira ◽  
Thiago Henrique Napoleão ◽  
...  

High-fat diet (HFD) consumption has been linked to dyslipidemia, low-grade inflammation and oxidative stress. This study investigated the effects of a mixed formulation with Limosilactobacillusfermentum 139, L. fermentum 263 and L. fermentum 296 on cardiometabolic parameters, fecal short-chain fatty acid (SCFA) contents and biomarkers of inflammation and oxidative stress in colon and heart tissues of male rats fed an HFD. Male Wistar rats were grouped into control diet (CTL, n = 6), HFD (n = 6) and HFD with L. fermentum formulation (HFD-Lf, n = 6) groups. The L.fermentum formulation (1 × 109 CFU/mL of each strain) was administered twice a day for 4 weeks. After a 4-week follow-up, biochemical parameters, fecal SCFA, cytokines and oxidative stress variables were evaluated. HFD consumption caused hyperlipidemia, hyperglycemia, low-grade inflammation, reduced fecal acetate and propionate contents and increased biomarkers of oxidative stress in colon and heart tissues when compared to the CTL group. Rats receiving the L. fermentum formulation had reduced hyperlipidemia and hyperglycemia, but similar SCFA contents in comparison with the HFD group (p < 0.05). Rats receiving the L. fermentum formulation had increased antioxidant capacity throughout the colon and heart tissues when compared with the control group. Administration of a mixed L. fermentum formulation prevented hyperlipidemia, inflammation and oxidative stress in colon and heart tissues induced by HFD consumption.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1201
Author(s):  
Claudio Pirozzi ◽  
Adriano Lama ◽  
Chiara Annunziata ◽  
Gina Cavaliere ◽  
Clara Ruiz-Fernandez ◽  
...  

Lines of evidence have shown the embryogenic and transgenerational impact of bisphenol A (BPA), an endocrine-disrupting chemical, on immune-metabolic alterations, inflammation, and oxidative stress, while BPA toxic effects in adult obese mice are still overlooked. Here, we evaluate BPA’s worsening effect on several hepatic maladaptive processes associated to high-fat diet (HFD)-induced obesity in mice. After 12 weeks HFD feeding, C57Bl/6J male mice were exposed daily to BPA (50 μg/kg per os) along with HFD for 3 weeks. Glucose tolerance and lipid metabolism were examined in serum and/or liver. Hepatic oxidative damage (reactive oxygen species, malondialdehyde, antioxidant enzymes), and mitochondrial respiratory capacity were evaluated. Moreover, liver damage progression and inflammatory/immune response were determined by histological and molecular analysis. BPA amplified HFD-induced alteration of key factors involved in glucose and lipid metabolism, liver triglycerides accumulation, and worsened mitochondrial dysfunction by increasing oxidative stress and reducing antioxidant defense. The exacerbation by BPA of hepatic immune-metabolic dysfunction induced by HFD was shown by increased toll-like receptor-4 and its downstream pathways (i.e., NF-kB and NLRP3 inflammasome) amplifying inflammatory cytokine transcription and promoting fibrosis progression. This study evidences that BPA exposure represents an additional risk factor for the progression of fatty liver diseases strictly related to the cross-talk between oxidative stress and immune-metabolic impairment due to obesity.


Neuropeptides ◽  
2020 ◽  
Vol 82 ◽  
pp. 102047 ◽  
Author(s):  
Napatsorn Saiyasit ◽  
Titikorn Chunchai ◽  
Nattayaporn Apaijai ◽  
Wasana Pratchayasakul ◽  
Jirapas Sripetchwandee ◽  
...  

2016 ◽  
Vol 7 (6) ◽  
pp. 2675-2681 ◽  
Author(s):  
Paula S. Ferreira ◽  
Luis C. Spolidorio ◽  
John A. Manthey ◽  
Thais B. Cesar

In vivoantioxidant and anti-inflammatory effects of citrus flavanones.


2014 ◽  
Vol 5 (12) ◽  
pp. 3216-3223 ◽  
Author(s):  
Chuan Li ◽  
Shao-Ping Nie ◽  
Ke-Xue Zhu ◽  
Qiao Ding ◽  
Chang Li ◽  
...  

Possible mechanisms underlying how Lactobacillus plantarum NCU116 improves lipid metabolism in rats with high fat diet induced NAFLD.


Sign in / Sign up

Export Citation Format

Share Document