scholarly journals Novel Extraction Method for Combined Lipid and Metal Speciation From Caenorhabditis elegans With Focus on Iron Redox Status and Lipid Profiling

2021 ◽  
Vol 9 ◽  
Author(s):  
Bastian Blume ◽  
Michael Witting ◽  
Philippe Schmitt-Kopplin ◽  
Bernhard Michalke

Parkinson´s disease progression is linked to iron redox status homeostasis via reactive oxygen species (ROS) formation, and lipids are the primary targets of ROS. The determination of iron redox status in vivo is challenging and requires specific extraction methods, which are so far tedious and very time-consuming. We demonstrated a novel, faster, and less laborious extraction method using the chelator ethylene glycol l-bis(β-aminoethyl ether)-N,N,N′,N′-tetra acetic acid (EGTA) as a stabilizing agent and synthetic quartz beads for homogenization under an argon atmosphere. Additionally, we combined the metal extraction with a well-established lipid extraction protocol using methyl-tert-butyl ether (MTBE) to avoid the problems of lipid precipitation in frozen samples and to determine lipid profiles and metal species from the same batch. The nonextractable matrix, such as the debris, is removed by centrifugation and digested to determine the total metal content of the sample as well. Lipid profiling using RP-LC–MS demonstrated high accordance of the modified extraction method to the reference method, and the organic solvent does not affect the iron redox status equilibrium. Furthermore, rigorous testing demonstrated the stability of the iron redox status equilibrium during the extraction process, secured by complexation, inert atmosphere, fast preparation, and immediately deep frozen extracts.

Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 73
Author(s):  
Jordan T. Nechev ◽  
Guro K. Edvinsen ◽  
Karl-Erik Eilertsen

The scope of this paper was to apply two recently developed methods for lipid extraction: the methyl tert-butyl ether (MTBE) method and the BUME method. These two methods do not include halogenated solvents, which makes them less hazardous to the environment, less toxic, and needed in less volume compared to the standard methods for lipid extraction. Fatty acid composition of the lipids from Atlantic salmon (Salmo salar Linnæus, 1758) was obtained by both procedures. The methods were effective and thirty-three fatty acids were identified. The amounts of the omega-3 polyunsaturated fatty acids obtained by the MTBE method were found to be similar to the overall mean values observed in farmed salmon. The yield of the total lipids obtained by the BUME method was 13% lower. Although the methods involved different solvents, they showed similar fatty acids profile of the lipids from Atlantic salmon. Both methods were validated and some practical challenges were discussed.


2008 ◽  
Vol 49 (5) ◽  
pp. 1137-1146 ◽  
Author(s):  
Vitali Matyash ◽  
Gerhard Liebisch ◽  
Teymuras V. Kurzchalia ◽  
Andrej Shevchenko ◽  
Dominik Schwudke

2002 ◽  
Vol 68 (6) ◽  
pp. 2754-2762 ◽  
Author(s):  
Alan François ◽  
Hugues Mathis ◽  
Davy Godefroy ◽  
Pascal Piveteau ◽  
Françoise Fayolle ◽  
...  

ABSTRACT A strain that efficiently degraded methyl tert-butyl ether (MTBE) was obtained by initial selection on the recalcitrant compound tert-butyl alcohol (TBA). This strain, a gram-positive methylotrophic bacterium identified as Mycobacterium austroafricanum IFP 2012, was also able to degrade tert-amyl methyl ether and tert-amyl alcohol. Ethyl tert-butyl ether was weakly degraded. tert-Butyl formate and 2-hydroxy isobutyrate (HIBA), two intermediates in the MTBE catabolism pathway, were detected during growth on MTBE. A positive effect of Co2+ during growth of M. austroafricanum IFP 2012 on HIBA was demonstrated. The specific rate of MTBE degradation was 0.6 mmol/h/g (dry weight) of cells, and the biomass yield on MTBE was 0.44 g (dry weight) per g of MTBE. MTBE, TBA, and HIBA degradation activities were induced by MTBE and TBA, and TBA was a good inducer. Involvement of at least one monooxygenase during degradation of MTBE and TBA was shown by (i) the requirement for oxygen, (ii) the production of propylene epoxide from propylene by MTBE- or TBA- grown cells, and (iii) the inhibition of MTBE or TBA degradation and of propylene epoxide production by acetylene. No cytochrome P-450 was detected in MTBE- or TBA-grown cells. Similar protein profiles were obtained after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of crude extracts from MTBE- and TBA-grown cells. Among the polypeptides induced by these substrates, two polypeptides (66 and 27 kDa) exhibited strong similarities with known oxidoreductases.


2016 ◽  
Vol 74 (6) ◽  
pp. 1365-1375 ◽  
Author(s):  
Chensi Shen ◽  
Shaoshuai Wu ◽  
Hui Chen ◽  
Sadia Rashid ◽  
Yuezhong Wen

In order to prevent health risk from potential exposures to phthalates, a glow discharge plasma (GDP) process was applied for phthalate degradation in aqueous solution. The results revealed that the phthalate derivatives 4-hydroxyphthalic acid, 4-methylphthalic acid and 4-tert-butylphthalic anhydride could be degraded efficiently in GDP process (498 V, 0.2 A) with high removal efficiencies of over 99% in 60 minutes. Additionally, pyrite as a promising heterogeneous iron source in the Fenton reaction was found to be favorable for GDP process. The phthalate degradation reaction could be significantly enhanced by the continuous formation of •OH and the inhibition of the quenching reaction in the pyrite Fenton system due to the constant dissolution of Fe(II) from pyrite surface. Meanwhile, the initial pH value showed little impact on the degradation of phthalates and the energy efficiency of GDP system for phthalate degradation ranged between 0.280 × 10−9 and 1.210 × 10−9 mol/J, which is similar to the GDP system with phenol, bisphenol A and methyl tert-butyl ether as the substrates. Further, the X-ray diffraction and scanning electron microscopy with energy dispersive X-ray spectroscopy analyses indicated that the pyrite was relatively stable in GDP system and there was no obvious polymeric compound formed on the catalyst surface. Overall, this GDP process offers high removal efficiency, simple technology, considerable energy efficiency and the applicability to salt-containing phthalate wastewater.


1994 ◽  
Vol 29 (4) ◽  
pp. 486-494 ◽  
Author(s):  
Naohito Uchida ◽  
Toshiaki Nakatsu ◽  
Shuko Hirabayashi ◽  
Atsushi Minami ◽  
Hiroki Fukuma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document