scholarly journals Ab Initio Calculations for the Electronic, Interfacial and Optical Properties of Two-Dimensional AlN/Zr2CO2 Heterostructure

2021 ◽  
Vol 9 ◽  
Author(s):  
Kai Ren ◽  
Ruxin Zheng ◽  
Junbin Lou ◽  
Jin Yu ◽  
Qingyun Sun ◽  
...  

Recently, expanding the applications of two-dimensional (2D) materials by constructing van der Waals (vdW) heterostructures has become very popular. In this work, the structural, electronic and optical absorption performances of the heterostructure based on AlN and Zr2CO2 monolayers are studied by first-principles simulation. It is found that AlN/Zr2CO2 heterostructure is a semiconductor with a band gap of 1.790 eV. In the meanwhile, a type-I band structure is constructed in AlN/Zr2CO2 heterostructure, which can provide a potential application of light emitting devices. The electron transfer between AlN and Zr2CO2 monolayer is calculated as 0.1603 |e| in the heterostructure, and the potential of AlN/Zr2CO2 heterostructure decreased by 0.663 eV from AlN layer to Zr2CO2 layer. Beisdes, the AlN/Zr2CO2 vdW heterostructure possesses excellent light absorption ability of in visible light region. Our research provides a theoretical guidance for the designing of advanced functional heterostructures.

RSC Advances ◽  
2021 ◽  
Vol 11 (47) ◽  
pp. 29576-29584
Author(s):  
Junbin Lou ◽  
Kai Ren ◽  
Zhaoming Huang ◽  
Wenyi Huo ◽  
Zhengyang Zhu ◽  
...  

Two-dimensional (2D) materials have attracted numerous investigations after the discovery of graphene.


2014 ◽  
Vol 28 (09) ◽  
pp. 1450031 ◽  
Author(s):  
BO QIU ◽  
XIN-GUO YAN ◽  
WEI-QING HUANG ◽  
GUI-FANG HUANG ◽  
CHAO JIAO ◽  
...  

The electronic and optical properties of X-doped (X = Rh, Pd, Ag) cubic SrTiO 3 in perovskite structure are investigated using first-principles calculations. The strength of the Ti–O bonds near the substitutional X impurity is found to be weakened by the shorter X–O bonds. Three types of electronic characteristics due to X-doping are demonstrated. X-doping decreases the band gap of SrTiO 3, extending the optical absorption edge to visible light. Although Pd-doped SrTiO 3 has the greatest absorption in the visible light region, its photocatalytic activity is lower than that of Rh-doped SrTiO 3, because the intermediate bands from the 4d orbitals of the Pd dopant act as recombination centers. The theoretical results coincide with the available experimental results.


Nanoscale ◽  
2019 ◽  
Vol 11 (30) ◽  
pp. 14123-14133 ◽  
Author(s):  
Qingwen Guan ◽  
Junfei Ma ◽  
Wenjing Yang ◽  
Rui Zhang ◽  
Xiaojie Zhang ◽  
...  

Quantum dots, derived from two-dimensional (2D) materials, have shown promise in bioimaging, sensing and photothermal applications, and in white light emitting devices (WLEDs).


2021 ◽  
Vol 23 (6) ◽  
pp. 3963-3973
Author(s):  
Jianxun Song ◽  
Hua Zheng ◽  
Minxia Liu ◽  
Geng Zhang ◽  
Dongxiong Ling ◽  
...  

The structural, electronic and optical properties of a new vdW heterostructure, C2N/g-ZnO, with an intrinsic type-II band alignment and a direct bandgap of 0.89 eV at the Γ point are extensively studied by DFT calculations.


2014 ◽  
Vol 924 ◽  
pp. 260-268 ◽  
Author(s):  
Hao Chen ◽  
Lan Fang Yao ◽  
Song Lin Yang ◽  
Ya Qin Wang ◽  
Xing Liang ◽  
...  

The crystal structures, band structures, density of states, charge density, overlap population and optical properties of pure anatase TiO2 and Pr-doped anatase TiO2 were studied by using the plane-wave pseudopotential method based on the first-principles. After Pr doping, the valence band and the conduction band moved down and became dense, energy gap became narrow and a impurity band which consists of Pr 4f states appeared. And the dipole moment got improved, which is good for the separate of the electron-hole pairs. These effectively overcome two huge shortcomings of TiO2. Besides, Pr-doped anatase TiO2 produced more carriers which have good transport properties and the absorption spectra of Pr-O bond appear in the region that the wavelength is longer. The calculation results of optical properties show that the absorption edge occured red shift, which means the photocatalytic activity of anatase TiO2 got remarkable improved during visible-light region. This conforms to the previous analysis. So the photocatalytic activity of anatase TiO2 got remarkable improved after Pr doping.


Author(s):  
Kai Ren ◽  
Huabing Shu ◽  
Wenyi Huo ◽  
Zhen Cui ◽  
Jin Yu ◽  
...  

Two-dimensional (2D) materials with moderate bandgap and high carrier mobility are decent for the applications in the optoelectronics. In this work, we present a systematically investigation of the mechanical, electronic...


2021 ◽  
Author(s):  
Wenbing Cao ◽  
Yuhan Wu ◽  
Xin Li ◽  
Xuanfeng Jiang ◽  
Yuhong Zhang ◽  
...  

Abstract Silane-functionalized carbon dots (SiCDs) can be exploited as effective color converting materials for the solid-state light-emitting devices. However, most of SiCDs reported thus far have shown photoluminescence emissions in the blue and green spectral range, which limit them to construct an efficient white light-emitting diodes (WLEDs) due to the lack of long-wavelength emission. Herein, a series of double silane-functionalized carbon dots (DSiCDs) were prepared via a one-step solvothermal method. The results show that the organic functional group of the silane has great influence on the optical properties of DSiCDs and the number of alkoxy group in the silane has great influence on coating properties of DSiCDs. In addition, the DSiCDs prepared by (3-aminopropyl)triethoxysilane and N-[3-(Trimethoxysilyl)propyl]ethylenediamine with molar ratio of 7:3 show excellent optical properties with the maximum emission at 608 nm under 400 nm excitation. Furthermore, they can be completely dried within 1 h at room temperature to form fluorescent coating with high stability and strong adhesion to the substrate. Together with their excellent optical and coating properties, they can be directly coated on LED chips to prepare WLEDs, with a CIE coordinate of (0.33,0.31), color rendering index of 81.6, and color temperature of 5774 K.


Sign in / Sign up

Export Citation Format

Share Document