scholarly journals Porphyromonas gingivalis Administration Induces Gestational Obesity, Alters Gene Expression in the Liver and Brown Adipose Tissue in Pregnant Mice, and Causes Underweight in Fetuses

Author(s):  
Sumiko Yoshida ◽  
Masahiro Hatasa ◽  
Yujin Ohsugi ◽  
Yosuke Tsuchiya ◽  
Anhao Liu ◽  
...  

Preventing adverse pregnancy outcomes is crucial for maternal and child health. Periodontal disease is a risk factor for many systemic diseases including adverse pregnancy outcomes, such as preterm birth and low birth weight. In addition, the administration of the periodontopathic bacterium Porphyromonas gingivalis exacerbates obesity, glucose tolerance, and hepatic steatosis and alters endocrine function in the brown adipose tissue (BAT). However, the effects of having periodontal disease during pregnancy remain unclear. Thus, this study investigates the effect of P. gingivalis administration on obesity, liver, and BAT during pregnancy. Sonicated P. gingivalis (Pg) or saline (Co) was injected intravenously and administered orally to pregnant C57BL/6J mice three times per week. Maternal body weight and fetal body weight on embryonic day (ED) 18 were evaluated. Microarray analysis and qPCR in the liver and BAT and hepatic and plasma triglyceride quantification were performed on dams at ED 18. The body weight of Pg dams was heavier than that of Co dams; however, the fetal body weight was decreased in the offspring of Pg dams. Microarray analysis revealed 254 and 53 differentially expressed genes in the liver and BAT, respectively. Gene set enrichment analysis exhibited the downregulation of fatty acid metabolism gene set in the liver and estrogen response early/late gene sets in the BAT, whereas inflammatory response and IL6/JAK/STAT3 signaling gene sets were upregulated both in the liver and BAT. The downregulation of expression levels of Lpin1, Lpin2, and Lxra in the liver, which are associated with triglyceride synthesis, and a decreasing trend in hepatic triglyceride of Pg dams were observed. P. gingivalis administration may alter lipid metabolism in the liver. Overall, the intravenous and oral administration of sonicated P. gingivalis-induced obesity and modified gene expression in the liver and BAT in pregnant mice and caused fetuses to be underweight.

Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 796 ◽  
Author(s):  
Andrea Gille ◽  
Bojan Stojnic ◽  
Felix Derwenskus ◽  
Andreas Trautmann ◽  
Ulrike Schmid-Staiger ◽  
...  

Phaeodactylum tricornutum (P. tricornutum) comprise several lipophilic constituents with proposed anti-obesity and anti-diabetic properties. We investigated the effect of an ethanolic P. tricornutum extract (PTE) on energy metabolism in obesity-prone mice fed a high fat diet (HFD). Six- to eight-week-old male C57BL/6J mice were switched to HFD and, at the same time, received orally placebo or PTE (100 mg or 300 mg/kg body weight/day). Body weight, body composition, and food intake were monitored. After 26 days, blood and tissue samples were collected for biochemical, morphological, and gene expression analyses. PTE-supplemented mice accumulated fucoxanthin metabolites in adipose tissues and attained lower body weight gain, body fat content, weight of white adipose tissue (WAT) depots, and inguinal WAT adipocyte size than controls, independent of decreased food intake. PTE supplementation was associated with lower expression of Mest (a marker of fat tissue expandability) in WAT depots, lower gene expression related to lipid uptake and turnover in visceral WAT, increased expression of genes key to fatty acid oxidation and thermogenesis (Cpt1, Ucp1) in subcutaneous WAT, and signs of thermogenic activation including enhanced UCP1 protein in interscapular brown adipose tissue. In conclusion, these data show the potential of PTE to ameliorate HFD-induced obesity in vivo.


Author(s):  
Masahiro Hatasa ◽  
Yujin Ohsugi ◽  
Sayaka Katagiri ◽  
Sumiko Yoshida ◽  
Hiromi Niimi ◽  
...  

Improvement of obesity is important for increasing longevity. The characteristics, size, and function of adipocytes are altered in patients with obesity. Adipose tissue is not only an energy storage but also an endocrine organ. Alteration of endocrine activities in adipose tissue, among them the functional decline of brown adipose tissue (BAT), is associated with obesity. Periodontal disease is a risk factor for systemic diseases since endotoxemia is caused by periodontal bacteria. However, the effect of periodontal disease on obesity remains unclear. Thus, this study aimed to investigate the effect of endotoxemia due to Porphyromonas gingivalis, a prominent cause of periodontal disease, on the BAT. Herein, endotoxemia was induced in 12-week-old C57BL/6J mice through intravenous injection of sonicated 108 CFU of P. gingivalis (Pg) or saline (control [Co]) once. Eighteen hours later, despite no inflammatory M1 macrophage infiltration, inflammation-related genes were upregulated exclusively in the BAT of Pg mice compared with Co mice. Although no marked histological changes were observed in adipose tissues, expressions of genes related to lipolysis, Lipe and Pnpla2 were downregulated after P. gingivalis injection in BAT. Furthermore, expression of Pparg and Adipoq was downregulated only in the BAT but not in the white adipose tissues, along with downregulation of Ucp1 and Cidea expression, which are BAT-specific markers, in Pg mice. Microarray analysis of the BAT showed 106 differentially expressed genes between Co and Pg mice. Gene set enrichment analysis revealed that the cholesterol homeostasis gene set and PI3/Akt/mTOR signaling gene set in BAT were downregulated, whereas the TGF-β signaling gene set was enriched in Pg mice. Overall, intravenous injection of sonicated P. gingivalis altered the endocrine functions of the BAT in mice. This study indicates that endotoxemia by P. gingivalis potentially affects obesity by disrupting BAT function.


Author(s):  
Sumaya Ahmed ◽  
Nasser Rizk

Bile acids are significant physiological factors for digestion, solubilization, absorption, toxic metabolites and xenobiotics. In addition, bile acids are responsible of signal transduction as well as metabolic regulation that activate several receptors such as farnesoid X receptor (FXR) and the membrane G-protein receptor 5 (TGR5). Activation of TGR5 by bile acids is associated with prevention of obesity as well as ameliorating the resistance to insulin via increasing energy expenditure. The objective of this research is to investigate TGR5 gene expression level in different fat depots including visceral or epididymal adipose tissue (eWAT), brown adipose tissue and inguinal adipose tissue (iWAT) and to study the response of TGR5 gene expression to the antiobesity treatment (SFN). Three groups of male CD1 mice were used in this study; lean group fed with SCD, DIO mice on HFD and DIO obese mice treated with anti-obesity treatment. Body weight (BW) and phenotype data were evaluated by weekly including blood samples for analysis of glucose, insulin, leptin, triglycerides (TG). Total RNA was extracted from different fat depots and RT-PCR profiler array technology was used to in order to assess the mRNA expression of TGR5 and leptin. There was significant downregulation of TGR5 gene expression level in obese (DIO) mice and remarkable upregulation of TGR5 gene expression after successful weight loss in DIO mice treated with SFN in time dependent manner at 1 weeks and 4 weeks of ip applications. In conclusion, obesity is associated with decrease in expression of TGR5 in different fat depots and treatment with anti-obesity drug (Sulforaphane) causes stepwise upregulation of TGR5 gene expression in epididymal white adipose tissue parallel stepwise decrease in body weight. Increase of expression of TGR5 in DIO mice in eWAT is accompanied by improvement in glucose homeostasis and insulin action.


2005 ◽  
Vol 289 (1) ◽  
pp. E68-E74 ◽  
Author(s):  
Michael Koban ◽  
Kevin L. Swinson

A cluster of unique pathologies progressively develops during chronic total- or rapid eye movement-sleep deprivation (REM-SD) of rats. Two prominent and readily observed symptoms are hyperphagia and decline in body weight. For body weight to be lost despite a severalfold increase in food consumption suggests that SD elevates metabolism as the subject enters a state of negative energy balance. To test the hypothesis that mediation of this hypermetabolism involves increased gene expression of uncoupling protein-1 (UCP1), which dissipates the thermodynamic energy of the mitochondrial proton-motive force as heat instead of ATP formation in brown adipose tissue (BAT), we 1) established the time course and magnitude of change in metabolism by measuring oxygen consumption, 2) estimated change in UCP1 gene expression in BAT by RT-PCR and Western blot, and 3) assayed serum leptin because of its role in regulating energy balance and food intake. REM-SD of male Sprague-Dawley rats was enforced for 20 days with the platform (flowerpot) method, wherein muscle atonia during REM sleep causes contact with surrounding water and awakens it. By day 20, rats more than doubled food consumption while losing ∼11% of body weight; metabolism rose to 166% of baseline with substantial increases in UCP1 mRNA and immunoreactive UCP1 over controls; serum leptin decreased and remained suppressed. The decline in leptin is consistent with the hyperphagic response, and we conclude that one of the mediators of elevated metabolism during prolonged REM-SD is increased gene expression of UCP1 in BAT.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Rieko Takanabe ◽  
Koh Ono ◽  
Tomohide Takaya ◽  
Takahiro Horie ◽  
Hiromichi Wada ◽  
...  

Obesity is the result of an expansion and increase in the number of individual adipocytes. Since changes in gene expression during adipocyte differentiation and hypertrophy are closely associated with insulin resistance and cardiovascular diseases, further insight into the molecular basis of obesity is needed to better understand obesity-associated diseases. MicroRNAs (miRNAs) are approximately 17–24nt single stranded RNA, that post-transcriptionally regulate gene expression. MiRNAs control cell growth, differentiation and metabolism, and may be also involved in pathogenesis and pathophysiology of diseases. It has been proposed that miR-143 plays a role in the differentiation of preadipocytes into mature adipocytes in culture. However, regulated expression of miR-143 in the adult adipose tissue during the development of obesity in vivo is unknown. To solve this problem, C57BL/6 mice were fed with either high-fat diet (HFD) or normal chow (NC). Eight weeks later, severe insulin resistance was observed in mice on HFD. Body weight increased by 35% and the mesenteric fat weight increased by 3.3-fold in HFD mice compared with NC mice. We measured expression levels of miR-143 in the mesenteric fat tissue by real-time PCR and normalized with those of 5S ribosomal RNA. Expression of miR-143 in the mesenteric fat was significantly up-regulated (3.3-fold, p<0.05) in HFD mice compared to NC mice. MiR-143 expression levels were positively correlated with body weight (R=0.577, p=0.0011) and the mesenteric fat weight (R=0.608, p=0.0005). We also measured expression levels in the mesenteric fat of PPARγ and AP2, whose expression are deeply involved in the development of obesity, insulin resistant and arteriosclerosis. The expression levels of miR-143 were closely correlated with those of PPARγ (R=0.600, p=0.0040) and AP2 (R=0.630, p=0.0022). These findings provide the first evidence for up-regulated expression of miR-143 in the mesenteric fat of HFD-induced obese mice, which might contribute to regulated expression of genes involved in the pathophysiology of obesity.


2017 ◽  
Vol 313 (6) ◽  
pp. E731-E736 ◽  
Author(s):  
Wenjuan Wang ◽  
Xiangzhi Meng ◽  
Chun Yang ◽  
Dongliang Fang ◽  
Xuemeng Wang ◽  
...  

Loss of body weight and fat mass is one of the nonmotor symptoms of Parkinson’s disease (PD). Weight loss is due primarily to reduced energy intake and increased energy expenditure. Whereas inadequate energy intake in PD patients is caused mainly by appetite loss and impaired gastrointestinal absorption, the underlying mechanisms for increased energy expenditure remain largely unknown. Brown adipose tissue (BAT), a key thermogenic tissue in humans and other mammals, plays an important role in thermoregulation and energy metabolism; however, it has not been tested whether BAT is involved in the negative energy balance in PD. Here, using the 6-hydroxydopamine (6-OHDA) rat model of PD, we found that the activity of sympathetic nerve (SN), the expression of Ucp1 in BAT, and thermogenesis were increased in PD rats. BAT sympathetic denervation blocked sympathetic activity and decreased UCP1 expression in BAT and attenuated the loss of body weight in PD rats. Interestingly, sympathetic denervation of BAT was associated with decreased sympathetic tone and lipolysis in retroperitoneal and epididymal white adipose tissue. Our data suggeste that BAT-mediated thermogenesis may contribute to weight loss in PD.


2007 ◽  
Vol 97 (2) ◽  
pp. 389-398 ◽  
Author(s):  
Patricia Pérez-Matute ◽  
Nerea Pérez-Echarri ◽  
J. Alfredo Martínez ◽  
Amelia Marti ◽  
María J. Moreno-Aliaga

n-3 PUFA have shown potential anti-obesity and insulin-sensitising properties. However, the mechanisms involved are not clearly established. The aim of the present study was to assess the effects of EPA administration, one of the n-3 PUFA, on body-weight gain and adiposity in rats fed on a standard or a high-fat (cafeteria) diet. The actions on white adipose tissue lipolysis, apoptosis and on several genes related to obesity and insulin resistance were also studied. Control and cafeteria-induced overweight male Wistar rats were assigned into two subgroups, one of them daily received EPA ethyl ester (1 g/kg) for 5 weeks by oral administration. The high-fat diet induced a very significant increase in both body weight and fat mass. Rats fed with the cafeteria diet and orally treated with EPA showed a marginally lower body-weight gain (P = 0·09), a decrease in food intake (P < 0·01) and an increase in leptin production (P < 0·05). EPA administration reduced retroperitoneal adipose tissue weight (P < 0·05) which could be secondary to the inhibition of the adipogenic transcription factor PPARγ gene expression (P < 0·001), and also to the increase in apoptosis (P < 0·05) found in rats fed with a control diet. TNFα gene expression was significantly increased (P < 0·05) by the cafeteria diet, while EPA treatment was able to prevent (P < 0·01) the rise in this inflammatory cytokine. Adiposity-corrected adiponectin plasma levels were increased by EPA. These actions on both TNFα and adiponectin could explain the beneficial effects of EPA on insulin resistance induced by the cafeteria diet.


BMC Genomics ◽  
2010 ◽  
Vol 11 (1) ◽  
pp. 446 ◽  
Author(s):  
De Li ◽  
Yinxin Zhang ◽  
Li Xu ◽  
Linkang Zhou ◽  
Yue Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document