scholarly journals Recovery of Recombinant Canine Distemper Virus That Expresses CPV-2a VP2: Uncovering the Mutation Profile of Recombinant Undergoing 50 Serial Passages In Vitro

Author(s):  
Fuxiao Liu ◽  
Jiahui Lin ◽  
Qianqian Wang ◽  
Youming Zhang ◽  
Hu Shan

Canine distemper and canine parvoviral enteritis are infections caused by the canine distemper virus (CDV) and canine parvovirus type 2 (CPV-2), respectively. They are two common infectious diseases that cause high morbidity and mortality in affected dogs. Combination vaccines have been broadly used to protect dogs from infections of CDV, CPV-2, and other viruses. VP2 is the most abundant protein of the CPV-2 capsid. It elicits potent immunity in animals and, therefore, is widely used for designing subunit antigen-based vaccines. In this study, we rescued a recombinant CDV (QN vaccine strain) using reverse genetics. The recombinant CDV (rCDV-VP2) was demonstrated to express stably the VP2 in cells for at least 33 serial passages in vitro. Unfortunately, a nonsense mutation was initially identified in the VP2 open reading frame (ORF) at passage-34 (P34) and gradually became predominant in rCDV-VP2 quasispecies with passaging. Neither test strip detection nor indirect immunofluorescence assay demonstrated the expression of the VP2 at P50. The P50 rCDV-VP2 was subjected to next-generation sequencing, which totally identified 17 single-nucleotide variations (SNVs), consisting of 11 transitions and 6 transversions. Out of the 17 SNVs, 1 and 9 were identified as nonsense and missense mutations, respectively. Since the nonsense mutation arose in the VP2 ORF as early as P34, an earlier rCDV-VP2 progeny should be selected for the vaccination of animals in future experiments.

2020 ◽  
Vol 7 ◽  
Author(s):  
Fuxiao Liu ◽  
Qianqian Wang ◽  
Yilan Huang ◽  
Ning Wang ◽  
Youming Zhang ◽  
...  

Canine distemper virus (CDV), belonging to the genus Morbillivirus in the family Paramyxoviridae, is a highly contagious pathogen, affecting various domestic, and wild carnivores. Conventional methods are too cumbersome to be used for high-throughput screening of anti-CDV drugs. In this study, a recombinant CDV was rescued using reverse genetics for facilitating screening of anti-CDV drug in vitro. The recombinant CDV could stably express the NanoLuc® luciferase (NLuc), a novel enzyme that was smaller and “brighter” than others. The intensity of NLuc-catalyzed luminescence reaction indirectly reflected the anti-CDV effect of a certain drug, due to a positive correlation between NLuc expression and virus propagation in vitro. Based on such a characteristic feature, the recombinant CDV was used for anti-CDV assays on four drugs (ribavirin, moroxydine hydrochloride, 1-adamantylamine hydrochloride, and tea polyphenol) via analysis of luciferase activity, instead of via conventional methods. The result showed that out of these four drugs, only the ribavirin exhibited a detectable anti-CDV effect. The NLuc-tagged CDV would be a rapid tool for high-throughput screening of anti-CDV drugs.


1980 ◽  
Vol 29 (3) ◽  
pp. 940-944 ◽  
Author(s):  
A E Metzler ◽  
R J Higgins ◽  
S Krakowka ◽  
A Koestner

Virulence of canine distemper virus (CDV) adapted to in vitro growth in Vero or bovine cells was determined by inoculation into CDV-susceptible neonatal gnotobiotic dogs. When compared with dogs given virulent R252-CDV, Vero R252-CDV was attenuated at passage level 14. In contrast, dogs inoculated with bovine R252-CDV at the same passage level experienced rapid fatal neurological disease. Virulence was not linked to ability to infect or replicate in canine pulmonary macrophage cultures. Retention of virulence by bovine R252-CDV is unique and worthy of further study.


Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 688 ◽  
Author(s):  
Miguel Angel Muñoz-Alía ◽  
Stephen J. Russell

Measles virus (MeV) is monotypic. Live virus challenge provokes a broadly protective humoral immune response that neutralizes all known measles genotypes. The two surface glycoproteins, H and F, mediate virus attachment and entry, respectively, and neutralizing antibodies to H are considered the main correlate of protection. Herein, we made improvements to the MeV reverse genetics system and generated a panel of recombinant MeVs in which the globular head domain or stalk region of the H glycoprotein or the entire F protein, or both, were substituted with the corresponding protein domains from canine distemper virus (CDV), a closely related morbillivirus that resists neutralization by measles-immune sera. The viruses were tested for sensitivity to human or guinea pig neutralizing anti-MeV antisera and to ferret anti-CDV antisera. Virus neutralization was mediated by antibodies to both H and F proteins, with H being immunodominant in the case of MeV and F being so in the case of CDV. Additionally, the globular head domains of both MeV and CDV H proteins were immunodominant over their stalk regions. These data shed further light on the factors constraining the evolution of new morbillivirus serotypes.


Glia ◽  
1991 ◽  
Vol 4 (4) ◽  
pp. 408-416 ◽  
Author(s):  
Susan Pearce-Kelling ◽  
William J. Mitchell ◽  
Brian A. Summers ◽  
Max J. G. Appel

1983 ◽  
Vol 62 (1-2) ◽  
pp. 51-58 ◽  
Author(s):  
A. Zurbriggen ◽  
M. Vandevelde

2008 ◽  
Vol 82 (22) ◽  
pp. 11429-11436 ◽  
Author(s):  
Chao Wei ◽  
Tibor Farkas ◽  
Karol Sestak ◽  
Xi Jiang

ABSTRACT Tulane virus (TV) is a newly reported calicivirus that was isolated from stool samples of captive rhesus macaques from the Tulane National Primate Research Center (TNPRC). The virus has been cultivated successfully in LLC-MK2 rhesus monkey kidney cells. Its complete genomic sequence suggests that TV represents a new genus and is evolutionarily more closely related to Norovirus than to any other genus of Caliciviridae. In this study, we demonstrated that RNA transcripts made in vitro from the full-length genomic cDNA of TV were infectious upon transfection into permissive LLC-MK2 cells. The recombinant virus exhibited plaque morphologies and growth kinetics similar to those of the wild-type virus in this cell line. Capping was required for TV RNA infectivity. Although a subgenomic RNA has been detected in TV-transfected cells, a separate subgenomic RNA transcript was not required for the initial transfection to establish the replication. Transfection of truncated RNA lacking open reading frame 2 (ORF2) and ORF3 or TV-norovirus chimeric RNA resulted in abortive replication without the production of infectious progeny viruses, indicating that both ORFs are essential for the replication of TV. A heterologous insertion at the 5′ end of the genome also hampered viral replication, suggesting that an authentic 5′ end of the genome is critical for replication. The availability of the complete genomic sequence and the reverse genetics system described herein make TV a valuable model for studying calicivirus pathogenesis and replication.


2002 ◽  
Vol 9 (4) ◽  
pp. 921-924 ◽  
Author(s):  
Masami Mochizuki ◽  
Megumi Motoyoshi ◽  
Ken Maeda ◽  
Kazunari Kai

ABSTRACT The properties of neutralization of antigens of canine distemper virus Onderstepoort and a recent field isolate, KDK-1, were investigated with strain-specific dog sera. A conventional neutralization assay indicated antigenic dissimilarity between the strains; however, when guinea pig complement was included in the reaction mixture, the strains were neutralized with not only the homologous but also the heterologous antibodies.


2005 ◽  
Vol 107 (1-2) ◽  
pp. 1-12 ◽  
Author(s):  
P. Engelhardt ◽  
M. Wyder ◽  
A. Zurbriggen ◽  
A. Gröne

2008 ◽  
Vol 77 (2) ◽  
pp. 108-113 ◽  
Author(s):  
Gabriella Elia ◽  
Chiara Belloli ◽  
Francesco Cirone ◽  
Maria Stella Lucente ◽  
Marta Caruso ◽  
...  

2012 ◽  
Vol 107 (05) ◽  
pp. 854-863 ◽  
Author(s):  
Nigel P. Birch ◽  
Peter J. Browett ◽  
Paul B. Coughlin ◽  
Anita J. Horvath ◽  
Neil S. Van de Water ◽  
...  

SummaryProtein Z-dependent protease inhibitor (ZPI) is a plasma inhibitor of factor (F)Xa and FXIa. In an earlier study, five mutations were identified within the ZPI gene of venous thrombosis patients and healthy controls. Two of these were nonsense mutations and three were missense mutations in important regions of the protein. Here we report that two of these latter three mutations, F145L and Q384R, impair the inhibitory function of ZPI in vitro. Recombinant wild-type and mutant proteins were prepared; stability in response to thermal challenge was similar. Inhibition of FXa in the presence of the cofactor protein Z was reduced 68-fold by the Q384R mutant; inhibition of FXIa by the F145L mutant was reduced two- to three-fold compared to the wild-type ZPI. An analysis of all five ZPI mutations was undertaken in a cohort of venous thrombosis patients (n=550) compared to healthy controls (n=600). Overall, there was a modest increase in incidence of these mutations in the thrombosis group (odds ratio 2.0, 1.05–3.7, p=0.044). However, in contrast to W324X (nonsense mutation), the Q384R missense mutation and R88X nonsense mutation were evenly distributed in patients and controls; F145L was rare. The final mutation (S143Y) was also rare and did not significantly alter ZPI function in laboratory studies. The F145L and particularly the Q384R mutation impaired the function of the coagulation inhibitor ZPI; however, there was no convincing association between these mutations and venous thrombosis risk. The functional role for ZPI in vivo has yet to be clarified.


Sign in / Sign up

Export Citation Format

Share Document