scholarly journals Preconditioning With Natural Microbiota Strain Ochrobactrum vermis MYb71 Influences Caenorhabditis elegans Behavior

Author(s):  
Carola Petersen ◽  
Barbara Pees ◽  
Christina Martínez Christophersen ◽  
Matthias Leippe

In comparison with the standard monoxenic maintenance in the laboratory, rearing the nematode Caenorhabditis elegans on its natural microbiota improves its fitness and immunity against pathogens. Although C. elegans is known to exhibit choice behavior and pathogen avoidance behavior, little is known about whether C. elegans actively chooses its (beneficial) microbiota and whether the microbiota influences worm behavior. We examined eleven natural C. elegans isolates in a multiple-choice experiment for their choice behavior toward four natural microbiota bacteria and found that microbiota choice varied among C. elegans isolates. The natural C. elegans isolate MY2079 changed its choice behavior toward microbiota isolate Ochrobactrum vermis MYb71 in both multiple-choice and binary-choice experiments, in particular on proliferating bacteria: O. vermis MYb71 was chosen less than other microbiota bacteria or OP50, but only after preconditioning with MYb71. Examining escape behavior and worm fitness on MYb71, we ruled out pathogenicity of MYb71 and consequently learned pathogen avoidance behavior as the main driver of the behavioral change toward MYb71. The change in behavior of C. elegans MY2079 toward microbiota bacterium MYb71 demonstrates how the microbiota influences the worm’s choice. These results might give a baseline for future research on host–microbiota interaction in the C. elegans model.

2020 ◽  
Vol 123 (5) ◽  
pp. 2064-2074 ◽  
Author(s):  
Christina K. Johnson ◽  
Jesus Fernandez-Abascal ◽  
Ying Wang ◽  
Lei Wang ◽  
Laura Bianchi

Increasing evidences support that accessory cells in mechanosensors regulate neuronal output; however, the glial molecular mechanisms that control this regulation are not fully understood. We show here in Caenorhabditis elegans that specific glial Na+-K+-ATPase genes are needed for nose touch-avoidance behavior. Our data support the requirement of these Na+-K+-ATPases for homeostasis of Na+ and K+ in nose touch receptors. Our data add to our understanding of glial regulation of mechanosensors.


2012 ◽  
Vol 58 (11) ◽  
pp. 1268-1277 ◽  
Author(s):  
Arihiro Osanai ◽  
Dong-Liang Hu ◽  
Akio Nakane

Avoidance behavior of Caenorhabditis elegans, a nematode, towards Staphylococcus aureus, a pathogenic bacterium, was studied. Caenorhabditis elegans avoided S. aureus cultures and also their culture supernatants, suggesting that secretory molecules are involved in the repellent activity. We demonstrated that toxic shock syndrome toxin 1 (TSST-1) and staphylococcal enterotoxin C (SEC), the superantigenic toxins produced by S. aureus, are responsible for the nematode avoidance. By using TSST-1 and SEC mutants, the results indicated that the repellent activity of these toxins is independent of their superantigenic activity. The TSST-1 and SEC were found to locate at chemosensory neurons that are responsible for the recognition of repellents and avoidance of pathogenic bacteria. When mutants of C. elegans deficient in Toll/interleukin-1 receptor (TIR-1) and 5-hydroxytryptamine (5-HT) biosynthesis were used, avoidance behavior was attenuated. In the 5-HT biosynthesis deficient mutant nematodes, the avoidance activity was recovered when exogenous 5-HT was added. tph-1 expression and 5-HT production were upregulated when the nematodes were treated with TSST-1 or SEC. These results suggest that C. elegans avoids S. aureus by recognizing secretory molecules including TSST-1 and SEC and this avoidance is dependent on TIR and production of 5-HT.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1515
Author(s):  
Sangsoon Park ◽  
Yoonji Jung ◽  
Seon Woo A. An ◽  
Heehwa G. Son ◽  
Wooseon Hwang ◽  
...  

Background: α-arrestins are a family of proteins that are implicated in multiple biological processes, including metabolism and receptor desensitization. Methods: Here, we sought to examine the roles of α-arrestins in the longevity of Caenorhabditis elegans through an RNA interference screen. Results: We found that knocking down each of 24 out of total 29 C. elegans α-arrestins had small or no effects on lifespan. Thus, individual C. elegans α-arrestins may have minor effects on longevity. Conclusions: This study will provide useful information for future research on the functional role of α-arrestins in aging and longevity.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1515
Author(s):  
Sangsoon Park ◽  
Yoonji Jung ◽  
Seon Woo A. An ◽  
Heehwa G. Son ◽  
Wooseon Hwang ◽  
...  

Background: α-arrestins are a family of proteins that are implicated in multiple biological processes, including metabolism and receptor desensitization. Methods: Here, we sought to examine the roles of α-arrestins in the longevity of Caenorhabditis elegans through an RNA interference screen. Results: We found that feeding worms with bacteria expressing double-stranded RNA against each of 24 out of total 29 C. elegans α-arrestins had little effect on lifespan. Thus, individual C. elegans α-arrestins may have minor effects on longevity. Conclusions: This study will provide useful information for future research on the functional role of α-arrestins in aging and longevity.


2018 ◽  
Author(s):  
Rebecca S. Moore ◽  
Rachel Kaletsky ◽  
Coleen T. Murphy

AbstractThe ability to pass on learned information to progeny could present an evolutionary advantage for many generations. While apparently evolutionarily conserved1–12, transgenerational epigenetic inheritance (TEI) is not well understood at the molecular or behavioral levels. Here we describe our discovery that C. elegans can pass on a learned pathogenic avoidance behavior to their progeny for several generations through epigenetic mechanisms. Although worms are initially attracted to the gram-negative bacteria P. aeruginosa (PA14)13, they can learn to avoid this pathogen13. We found that prolonged PA14 exposure results in transmission of avoidance behavior to progeny that have themselves never been exposed to PA14, and this behavior persists through the fourth generation. This form of transgenerational inheritance of bacterial avoidance is specific to pathogenic P. aeruginosa, requires physical contact and infection, and is distinct from CREB-dependent long-term associative memory and larval imprinting. The TGF-β ligand daf-7, whose expression increases in the ASJ upon initial exposure to PA1414, is highly expressed in the ASI neurons of progeny of trained mothers until the fourth generation, correlating with transgenerational avoidance behavior. Mutants of histone modifiers and small RNA mediators display defects in naïve PA14 attraction and aversive learning. By contrast, the germline-expressed PRG-1/Piwi homolog15 is specifically required for transgenerational inheritance of avoidance behavior. Our results demonstrate a novel and natural paradigm of TEI that may optimize progeny decisions and subsequent survival in the face of changing environmental conditions.


2021 ◽  
Vol 2 (1) ◽  
pp. 100384
Author(s):  
Rebecca S. Moore ◽  
Rachel Kaletsky ◽  
Coleen T. Murphy

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1515
Author(s):  
Sangsoon Park ◽  
Yoonji Jung ◽  
Seon Woo A. An ◽  
Heehwa G. Son ◽  
Wooseon Hwang ◽  
...  

Background: α-arrestins are a family of proteins that are implicated in multiple biological processes, including metabolism and receptor desensitization. Methods: Here, we sought to examine the roles of α-arrestins in the longevity of Caenorhabditis elegans through an RNA interference screen. Results: We found that knocking down each of 24 out of total 29 C. elegans α-arrestins had small or no effects on lifespan. Thus, individual C. elegans α-arrestins may have minor effects on longevity. Conclusions: This study will provide useful information for future research on the functional role of α-arrestins in aging and longevity.


2020 ◽  
Vol 11 ◽  
Author(s):  
Cheng-Ju Kuo ◽  
Ya-Chu Hsu ◽  
Sin-Tian Wang ◽  
Bang-Yu Liou ◽  
Serene Boon-Yuean Lim ◽  
...  

Enterohemorrhagic Escherichia coli (EHEC), a human pathogen, also infects Caenorhabditis elegans. We demonstrated previously that C. elegans activates the p38 MAPK innate immune pathway to defend against EHEC infection. However, whether a C. elegans pattern recognition receptor (PRR) exists to regulate the immune pathway remains unknown. PRRs identified in other metazoans contain several conserved domains, including the leucine-rich repeat (LRR). By screening a focused RNAi library, we identified the IGLR-2, a transmembrane protein containing the LRR domain, as a potential immune regulator in C. elegans. Our data showed that iglr-2 regulates the host susceptibility to EHEC infection. Moreover, iglr-2 is required for pathogen avoidance to EHEC. The iglr-2 overexpressed strain, which was more resistant to EHEC originally, showed hypersusceptibility to EHEC upon knockdown of the p38 MAPK pathway. Together, our data suggested that iglr-2 plays an important role in C. elegans to defend EHEC by regulating pathogen-avoidance behavior and the p38 MAPK pathway.


Sign in / Sign up

Export Citation Format

Share Document