scholarly journals ACE2 Shedding and the Role in COVID-19

Author(s):  
Jieqiong Wang ◽  
Huiying Zhao ◽  
Youzhong An

Angiotensin converting enzyme 2 (ACE2), a transmembrane glycoprotein, is an important part of the renin-angiotensin system (RAS). In the COVID-19 epidemic, it was found to be the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). ACE2 maintains homeostasis by inhibiting the Ang II-AT1R axis and activating the Ang I (1-7)-MasR axis, protecting against lung, heart and kidney injury. In addition, ACE2 helps transport amino acids across the membrane. ACE2 sheds from the membrane, producing soluble ACE2 (sACE2). Previous studies have pointed out that sACE2 plays a role in the pathology of the disease, but the underlying mechanism is not yet clear. Recent studies have confirmed that sACE2 can also act as the receptor of SARS-COV-2, mediating viral entry into the cell and then spreading to the infective area. Elevated concentrations of sACE2 are more related to disease. Recombinant human ACE2, an exogenous soluble ACE2, can be used to supplement endogenous ACE2. It may represent a potent COVID-19 treatment in the future. However, the specific administration concentration needs to be further investigated.

2020 ◽  
Vol 22 (4) ◽  
pp. 344-354
Author(s):  
Laurent Bitker ◽  
◽  
Sheila K Patel ◽  
Intissar Bittar ◽  
Glenn M Eastwood ◽  
...  

Objective: Angiotensin-converting enzyme 2 activity reflects non-classical renin–angiotensin system upregulation. We assessed the association of urinary angiotensin-converting enzyme 2 (uACE2) activity with acute kidney injury (AKI). Design, setting and participants: A prospective observational study in which we measured uACE2 activity in 105 critically ill patients at risk of AKI. We report AKI stage 2 or 3 at 12 hours of urine collection (AKI12h) and AKI stage 2 or 3 at any time during intensive care unit stay in patients free from any stage of AKI at inclusion (AKIICU). AKI prediction was assessed using area under the receiver-operating characteristics curve (AUROC) and net reclassification indices (NRIs). Main outcome measure: AKI stage 2 or 3 at 12 hours of urine collection. Results: Within 12 hours of inclusion, 32 of 105 patients (30%) had developed AKI12h. Corrected uACE2 activity was significantly higher in patients without AKI12h compared with those with AKI12h (median [interquartile range], 13 [6–24] v 7 [4–10] pmol/min/mL per mmol/L of urine creatinine; P < 0.01). A 10-unit increase in uACE2 was associated with a 28% decrease in AKI12h risk (odds ratio [95% CI], 0.72 [0.46–0.97]). During intensive care unit admission, 39 of 76 patients (51%) developed AKIICU. uACE2 had an AUROC for the prediction of AKI12h of 0.68 (95% CI, 0.57–0.79), and correctly reclassified 28% of patients (positive NRI) to AKI12h. Patients with uACE2 > 8.7 pmol/min/mL per mmol/L of urine creatinine had a significantly lower risk of AKIICU on log-rank analysis (52% v 84%; P < 0.01). Conclusions: Higher uACE2 activity was associated with a decreased risk of AKI stage 2 or 3. Our findings support future evaluations of the role of the non-classical renin–angiotensin system during AKI.


Author(s):  
Congqing Wu ◽  
Dien Ye ◽  
Adam E. Mullick ◽  
Zhenyu Li ◽  
A.H. Jan Danser ◽  
...  

AbstractAngiotensin-converting enzyme 2 (ACE2), a component of the renin-angiotensin system, is a receptor for SARS-CoV-2, the virus that causes COVID-19. To determine whether the renin-angiotensin inhibition regulates ACE2 expression, either enalapril (an angiotensin-converting enzyme inhibitor) or losartan (an AT1 receptor blocker) was infused subcutaneously to male C57BL/6J mice for two weeks. Neither enalapril nor losartan changed abundance of ACE2 mRNA in lung, ileum, kidney, and heart. Viral entry also depends on transmembrane protease serine 2 (TMPRSS2) to prime the S protein. TMPRSS2 mRNA was abundant in lungs and ileum, modest in kidney, but barely detectable in heart. TMPRSS2 mRNA abundance was not altered by either enalapril or losartan in any of the 4 tissues. Next, we determined whether depletion of angiotensinogen (AGT), the unique substrate of the renin-angiotensin system, changes ACE2 and TMPRSS2 mRNA abundance. AGT antisense oligonucleotides (ASO) were injected subcutaneously to male C57BL/6J mice for 3 weeks. Abundance of ACE2 mRNA was unchanged in any of the 4 tissues, but TMPRSS2 mRNA was significantly decreased in lungs. Our data support that the renin-angiotensin inhibition does not regulate ACE2 and hence are not likely to increase risk for COVID-19.


2021 ◽  
Author(s):  
Ana Luiza Valle Martins ◽  
Filipe Alex da Silva ◽  
Lucas Bolais-Ramos ◽  
Gisele Capanema de Oliveira ◽  
Renata Cunha Ribeiro ◽  
...  

AbstractThe mono-carboxypeptidase Angiotensin-Converting Enzyme 2 (ACE2) is an important “player” of the renin-angiotensin system (RAS). ACE2 is also the receptor for SARS-CoV-2, the new coronavirus that causes COVID-19. It has been hypothesized that following SARS-CoV-2/ACE2 internalization Ang II level would increase in parallel to a decrease of Ang-(1-7) in COVID-19 patients. In this preliminary report, we analyzed the plasma levels of angiotensin peptides in 19 severe COVID-19 patients and 19 non-COVID-19 volunteers, to assess potential outcome associations. Unexpectedly, a significant increase in circulating Ang-(1-7) and lower Ang II plasma level were found in critically ill COVID-19 patients. Accordingly, an increased Ang-(1-7)/ Ang II ratio was observed in COVID-19 suggesting a RAS dysregulation toward an increased formation of Ang-(1-7) in these patients.


2012 ◽  
Vol 216 (2) ◽  
pp. R1-R17 ◽  
Author(s):  
Robson A S Santos ◽  
Anderson J Ferreira ◽  
Thiago Verano-Braga ◽  
Michael Bader

Angiotensin (Ang)-(1–7) is now recognized as a biologically active component of the renin–angiotensin system (RAS). Ang-(1–7) appears to play a central role in the RAS because it exerts a vast array of actions, many of them opposite to those attributed to the main effector peptide of the RAS, Ang II. The discovery of the Ang-converting enzyme (ACE) homolog ACE2 brought to light an important metabolic pathway responsible for Ang-(1–7) synthesis. This enzyme can form Ang-(1–7) from Ang II or less efficiently through hydrolysis of Ang I to Ang-(1–9) with subsequent Ang-(1–7) formation by ACE. In addition, it is now well established that the G protein-coupled receptor Mas is a functional binding site for Ang-(1–7). Thus, the axis formed by ACE2/Ang-(1–7)/Mas appears to represent an endogenous counterregulatory pathway within the RAS, the actions of which are in opposition to the vasoconstrictor/proliferative arm of the RAS consisting of ACE, Ang II, and AT1receptor. In this brief review, we will discuss recent findings related to the biological role of the ACE2/Ang-(1–7)/Mas arm in the cardiovascular and renal systems, as well as in metabolism. In addition, we will highlight the potential interactions of Ang-(1–7) and Mas with AT1and AT2receptors.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Nicola E. Clarke ◽  
Anthony J. Turner

The renin-angiotensin system (RAS) is a critical regulator of hypertension, primarily through the actions of the vasoactive peptide Ang II, which is generated by the action of angiotensin-converting enzyme (ACE) mediating an increase in blood pressure. The discovery of ACE2, which primarily metabolises Ang II into the vasodilatory Ang-(1-7), has added a new dimension to the traditional RAS. As a result there has been huge interest in ACE2 over the past decade as a potential therapeutic for lowering blood pressure, especially elevation resulting from excess Ang II. Studies focusing on ACE2 have helped to reveal other actions of Ang-(1-7), outside vasodilation, such as antifibrotic and antiproliferative effects. Moreover, investigations focusing on ACE2 have revealed a variety of roles not just catalytic but also as a viral receptor and amino acid transporter. This paper focuses on what is known about ACE2 and its biological roles, paying particular attention to the regulation of ACE2 expression. In light of the entrance of human recombinant ACE2 into clinical trials, we discuss the potential use of ACE2 as a therapeutic and highlight some pertinent questions that still remain unanswered about ACE2.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chris Tikellis ◽  
M. C. Thomas

Angiotensin-converting enzyme 2 (ACE2) shares some homology with angiotensin-converting enzyme (ACE) but is not inhibited by ACE inhibitors. The main role of ACE2 is the degradation of Ang II resulting in the formation of angiotensin 1–7 (Ang 1–7) which opposes the actions of Ang II. Increased Ang II levels are thought to upregulate ACE2 activity, and in ACE2 deficient mice Ang II levels are approximately double that of wild-type mice, whilst Ang 1–7 levels are almost undetectable. Thus, ACE2 plays a crucial role in the RAS because it opposes the actions of Ang II. Consequently, it has a beneficial role in many diseases such as hypertension, diabetes, and cardiovascular disease where its expression is decreased. Not surprisingly, current therapeutic strategies for ACE2 involve augmenting its expression using ACE2 adenoviruses, recombinant ACE2 or compounds in these diseases thereby affording some organ protection.


2021 ◽  
Vol 11 (4) ◽  
pp. 1497
Author(s):  
Darina Bačenková ◽  
Marianna Trebuňová ◽  
Tatiana Špakovská ◽  
Marek Schnitzer ◽  
Lucia Bednarčíková ◽  
...  

The global pandemic known as coronavirus disease 2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This review article presents the taxonomy of SARS-CoV-2 coronaviruses, which have been classified as the seventh known human pathogenic coronavirus. The etiology of COVID-19 is also briefly discussed. Selected characteristics of SARS-CoV-2, SARS-CoV, and HCoV-NL63 are compared in the article. The angiotensin converting enzyme-2 (ACE-2) has been identified as the receptor for the SARS-CoV-2 viral entry. ACE2 is well-known as a counter-regulator of the renin-angiotensin system (RAAS) and plays a key role in the cardiovascular system. In the therapy of patients with COVID-19, there has been a concern about the use of RAAS inhibitors. As a result, it is hypothesized that ACE inhibitors do not directly affect ACE2 activity in clinical use. Coronaviruses are zoonotic RNA viruses. Identification of the primary causative agent of the SARS-CoV-2 is essential. Sequencing showed that the genome of the Bat CoVRaTG13 virus found in bats matches the genome of up to (96.2%) of SARS-CoV-2 virus. Sufficient knowledge of the molecular and biological mechanisms along with reliable information related to SARS-CoV-2 gives hope for a quick solution to epidemiological questions and therapeutic processes.


TH Open ◽  
2020 ◽  
Vol 04 (02) ◽  
pp. e138-e144 ◽  
Author(s):  
Wolfgang Miesbach

AbstractThe activated renin–angiotensin system induces a prothrombotic state resulting from the imbalance between coagulation and fibrinolysis. Angiotensin II is the central effector molecule of the activated renin–angiotensin system and is degraded by the angiotensin-converting enzyme 2 to angiotensin (1–7). The novel coronavirus infection (classified as COVID-19) is caused by the new coronavirus SARS-CoV-2 and is characterized by an exaggerated inflammatory response that can lead to severe manifestations such as acute respiratory distress syndrome, sepsis, and death in a proportion of patients, mostly elderly patients with preexisting comorbidities. SARS-CoV-2 uses the angiotensin-converting enzyme 2 receptor to enter the target cells, resulting in activation of the renin–angiotensin system. After downregulating the angiotensin-converting enzyme 2, the vasoconstrictor angiotensin II is increasingly produced and its counterregulating molecules angiotensin (1–7) reduced. Angiotensin II increases thrombin formation and impairs fibrinolysis. Elevated levels were strongly associated with viral load and lung injury in patients with severe COVID-19. Therefore, the complex clinical picture of patients with severe complications of COVID-19 is triggered by the various effects of highly expressed angiotensin II on vasculopathy, coagulopathy, and inflammation. Future treatment options should focus on blocking the thrombogenic and inflammatory properties of angiotensin II in COVID-19 patients.


Author(s):  
Kaiming Wang ◽  
Mahmoud Gheblawi ◽  
Anish Nikhanj ◽  
Matt Munan ◽  
Erika MacIntyre ◽  
...  

ACE (angiotensin-converting enzyme)-2 as the target for SARS-CoV-2 also negatively regulates the renin-angiotensin system. Pathological activation of ADAM17 (A disintegrin and metalloproteinase-17) may potentiate inflammation and diminish ACE2-mediated tissue protection through proteolytic shedding, contributing to SARS-CoV-2 pathogenesis. We aim to examine plasma soluble ACE2 and angiotensin profiles in relation to outcomes by enrolling consecutive patients admitted for COVID-19 with baseline blood collection at admission and repeated sampling at 7 days. The primary outcome was 90-day mortality, and secondary outcomes were the incidence of end-organ injuries. Overall, 242 patients were included, the median age was 63 (52–74) years, 155 (64.0%) were men, and 57 (23.6%) patients reached the primary end point. Baseline soluble ACE2 was elevated in COVID-19 but was not associated with disease severity or mortality. In contrast, an upward trajectory of soluble ACE2 at repeat sampling was independently associated with an elevated risk of mortality and incidence of acute myocardial injury and circulatory shock. Similarly, an increase in soluble tumor necrosis factor receptor levels was also associated with adverse outcomes. Plasma Ang I, Ang 1-7 (angiotensin 1–7) levels, and the Ang 1-7/Ang II (angiotensin II) ratio were elevated during SARS-CoV-2 infection related to downregulation of ACE activity at baseline. Moreover, patients having an upward trajectory of soluble ACE2 were characterized by an imbalance in the Ang 1-7/Ang II ratio. The observed dysregulation of ACE2 and angiotensin peptides with disease progression suggest a potential role of ADAM17 inhibition and enhancing the beneficial Ang 1-7/Mas axis to improve outcomes against SARS-CoV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document