scholarly journals Progress and Challenges of Demand-Led Co-Produced Sub-Seasonal-to-Seasonal (S2S) Climate Forecasts in Nigeria

2021 ◽  
Vol 3 ◽  
Author(s):  
Kamoru A. Lawal ◽  
Eniola Olaniyan ◽  
Ibrahim Ishiyaku ◽  
Linda C. Hirons ◽  
Elisabeth Thompson ◽  
...  

This paper identifies fundamental issues which prevent the effective uptake of climate information services in Nigeria. We propose solutions which involve the extension of short-range (1 to 5 days) forecasts beyond that of medium-range (7 to 15 days) timescales through the operational use of current forecast data as well as improve collaboration and communication with forecast users. Using newly available data to provide seamless operational forecasts from short-term to sub-seasonal timescales, we examine evidence to determine if effective demand-led sub-seasonal-to-seasonal (S2S) climate forecasts can be co-produced. This evidence involves: itemization of forecast products delivered to stakeholders, with their development methodology; enumeration of inferences of forecast products and their influences on decisions taken by stakeholders; user-focused discussions of improvements on co-produced products; and the methods of evaluating the performance of the forecast products.We find that extending the production pipeline of short-range forecast timescales beyond the medium-range, such that the medium-range forecast timescales can be fed into existing tools for applying short-range forecasts, assisted in mitigating the risks of sub-seasonal climate variability on socio-economic activities in Nigeria. We also find that enhancing of collaboration and communication channels between the producers and the forecast product users helps to: enhance the development of user-tailored impact-based forecasts; increases users' trusts in the forecasts; and, seamlessly improves forecast evaluations. In general, these measures lead to more smooth delivery and increase in uptake of climate information services in Nigeria.

2014 ◽  
Vol 142 (8) ◽  
pp. 2978-2990 ◽  
Author(s):  
Kieran J. Lynch ◽  
David J. Brayshaw ◽  
Andrew Charlton-Perez

Abstract Analysis of the forecasts and hindcasts from the ECMWF 32-day forecast model reveals that there is statistically significant skill in predicting weekly mean wind speeds over areas of Europe at lead times of at least 14–20 days. Previous research on wind speed predictability has focused on the short- to medium-range time scales, typically finding that forecasts lose all skill by the later part of the medium-range forecast. To the authors’ knowledge, this research is the first to look beyond the medium-range time scale by taking weekly mean wind speeds, instead of averages at hourly or daily resolution, for the ECMWF monthly forecasting system. It is shown that the operational forecasts have high levels of correlation (~0.6) between the forecasts and observations over the winters of 2008–12 for some areas of Europe. Hindcasts covering 20 winters show a more modest level of correlation but are still skillful. Additional analysis examines the probabilistic skill for the United Kingdom with the application of wind power forecasting in mind. It is also shown that there is forecast “value” for end users (operating in a simple cost/loss ratio decision-making framework). End users that are sensitive to winter wind speed variability over the United Kingdom, Germany, and some other areas of Europe should therefore consider forecasts beyond the medium-range time scale as it is clear there is useful information contained within the forecast.


1994 ◽  
Vol 9 (1) ◽  
pp. 3-20 ◽  
Author(s):  
Mary A. Bedrick ◽  
Anthony J. Cristaldi ◽  
Stephen J. Colucci ◽  
Daniel S. Wilks

2021 ◽  
pp. 100309
Author(s):  
Abdoulaye Djido ◽  
Robert B. Zougmoré ◽  
Prosper Houessionon ◽  
Mathieu Ouédraogo ◽  
Issa Ouédraogo ◽  
...  

2015 ◽  
Vol 528 ◽  
pp. 503-513 ◽  
Author(s):  
Michelle T.H. van Vliet ◽  
Chantal Donnelly ◽  
Lena Strömbäck ◽  
René Capell ◽  
Fulco Ludwig

2007 ◽  
Vol 135 (4) ◽  
pp. 1195-1207 ◽  
Author(s):  
Timothy F. Hogan ◽  
Randal L. Pauley

Abstract The influence of convective momentum transport (CMT) on tropical cyclone (TC) track forecasts is examined in the Navy Operational Global Atmospheric Prediction System (NOGAPS) with the Emanuel cumulus parameterization. Data assimilation and medium-range forecast experiments show that for 35 tropical cyclones during August and September 2004 the inclusion of CMT in the cumulus parameterization significantly improves the TC track forecasts. The tests show that the track forecasts are very sensitive to the magnitude of the Emanuel parameterization’s convective momentum transport parameter, which controls the CMT tendency returned by the parameterization. While the overall effect of this formulation of CMT in NOGAPS data assimilation/medium-range forecasts results in the surface pressure of tropical cyclones being less intense (and more consistent with the analysis), the parameterization is not equivalent to a simple diffusion of winds in the presence of convection. This is demonstrated by two data assimilation/medium-range forecast tests in which a vertical diffusion algorithm replaces the CMT. Two additional data assimilation/medium-range forecast experiments were conducted to test whether the skill increase primarily comes from the CMT in the immediate vicinity of the tropical cyclones. The results show that the inclusion of the CMT calculation in the vicinity of the TC makes the largest contribution to the increase in forecast skill, but the general contribution of CMT away from the TC also plays an important role.


Sign in / Sign up

Export Citation Format

Share Document