scholarly journals Relevant Physiological Indicators for Assessing Workload in Conditionally Automated Driving, Through Three-Class Classification and Regression

2022 ◽  
Vol 3 ◽  
Author(s):  
Quentin Meteier ◽  
Emmanuel De Salis ◽  
Marine Capallera ◽  
Marino Widmer ◽  
Leonardo Angelini ◽  
...  

In future conditionally automated driving, drivers may be asked to take over control of the car while it is driving autonomously. Performing a non-driving-related task could degrade their takeover performance, which could be detected by continuous assessment of drivers' mental load. In this regard, three physiological signals from 80 subjects were collected during 1 h of conditionally automated driving in a simulator. Participants were asked to perform a non-driving cognitive task (N-back) for 90 s, 15 times during driving. The modality and difficulty of the task were experimentally manipulated. The experiment yielded a dataset of drivers' physiological indicators during the task sequences, which was used to predict drivers' workload. This was done by classifying task difficulty (three classes) and regressing participants' reported level of subjective workload after each task (on a 0–20 scale). Classification of task modality was also studied. For each task, the effect of sensor fusion and task performance were studied. The implemented pipeline consisted of a repeated cross validation approach with grid search applied to three machine learning algorithms. The results showed that three different levels of mental load could be classified with a f1-score of 0.713 using the skin conductance and respiration signals as inputs of a random forest classifier. The best regression model predicted the subjective level of workload with a mean absolute error of 3.195 using the three signals. The accuracy of the model increased with participants' task performance. However, classification of task modality (visual or auditory) was not successful. Some physiological indicators such as estimates of respiratory sinus arrhythmia, respiratory amplitude, and temporal indices of heart rate variability were found to be relevant measures of mental workload. Their use should be preferred for ongoing assessment of driver workload in automated driving.

2021 ◽  
Vol 12 ◽  
Author(s):  
Quentin Meteier ◽  
Marine Capallera ◽  
Simon Ruffieux ◽  
Leonardo Angelini ◽  
Omar Abou Khaled ◽  
...  

The use of automation in cars is increasing. In future vehicles, drivers will no longer be in charge of the main driving task and may be allowed to perform a secondary task. However, they might be requested to regain control of the car if a hazardous situation occurs (i.e., conditionally automated driving). Performing a secondary task might increase drivers' mental workload and consequently decrease the takeover performance if the workload level exceeds a certain threshold. Knowledge about the driver's mental state might hence be useful for increasing safety in conditionally automated vehicles. Measuring drivers' workload continuously is essential to support the driver and hence limit the number of accidents in takeover situations. This goal can be achieved using machine learning techniques to evaluate and classify the drivers' workload in real-time. To evaluate the usefulness of physiological data as an indicator for workload in conditionally automated driving, three physiological signals from 90 subjects were collected during 25 min of automated driving in a fixed-base simulator. Half of the participants performed a verbal cognitive task to induce mental workload while the other half only had to monitor the environment of the car. Three classifiers, sensor fusion and levels of data segmentation were compared. Results show that the best model was able to successfully classify the condition of the driver with an accuracy of 95%. In some cases, the model benefited from sensors' fusion. Increasing the segmentation level (e.g., size of the time window to compute physiological indicators) increased the performance of the model for windows smaller than 4 min, but decreased for windows larger than 4 min. In conclusion, the study showed that a high level of drivers' mental workload can be accurately detected while driving in conditional automation based on 4-min recordings of respiration and skin conductance.


2019 ◽  
Vol 3 (1) ◽  
pp. 58
Author(s):  
Yefta Christian

<p class="8AbstrakBahasaIndonesia"><span>The growth of online stores nowadays is very rapid. This is supported by faster and better internet infrastructure. The increasing growth of online stores makes the competition more difficult in this business field. It is necessary for online stores to have a website or an application that is able to measure and classify consumers’ spending intentions, so that the consumers will have eyes on things on the sites and applications to make purchases eventually. Classification of online shoppers’ intentions can be done by using several algorithms, such as Naïve Bayes, Multi-Layer Perceptron, Support Vector Machine, Random Forest and J48 Decision Trees. In this case, the comparison of algorithms is done with two tools, WEKA and Sci-Kit Learn by comparing the values of F1-Score, accuracy, Kappa Statistic and mean absolute error. There is a difference between the test results using WEKA and Sci-Kit Learn on the Support Vector Machine algorithm. Based on this research, the Random Forest algorithm is the most appropriate algorithm to be used as an algorithm for classifying online shoppers’ intentions.</span></p>


2013 ◽  
Author(s):  
Laura K. Varner ◽  
Scott A. Crossley ◽  
Erica L. Snow ◽  
Danielle S. McNamara

2019 ◽  
Author(s):  
Debbie Marianne Yee ◽  
Sarah L Adams ◽  
Asad Beck ◽  
Todd Samuel Braver

Motivational incentives play an influential role in value-based decision-making and cognitive control. A compelling hypothesis in the literature suggests that the brain integrates the motivational value of diverse incentives (e.g., motivational integration) into a common currency value signal that influences decision-making and behavior. To investigate whether motivational integration processes change during healthy aging, we tested older (N=44) and younger (N=54) adults in an innovative incentive integration task paradigm that establishes dissociable and additive effects of liquid (e.g., juice, neutral, saltwater) and monetary incentives on cognitive task performance. The results reveal that motivational incentives improve cognitive task performance in both older and younger adults, providing novel evidence demonstrating that age-related cognitive control deficits can be ameliorated with sufficient incentive motivation. Additional analyses revealed clear age-related differences in motivational integration. Younger adult task performance was modulated by both monetary and liquid incentives, whereas monetary reward effects were more gradual in older adults and more strongly impacted by trial-by-trial performance feedback. A surprising discovery was that older adults shifted attention from liquid valence toward monetary reward throughout task performance, but younger adults shifted attention from monetary reward toward integrating both monetary reward and liquid valence by the end of the task, suggesting differential strategic utilization of incentives. Together these data suggest that older adults may have impairments in incentive integration, and employ different motivational strategies to improve cognitive task performance. The findings suggest potential candidate neural mechanisms that may serve as the locus of age-related change, providing targets for future cognitive neuroscience investigations.


2020 ◽  
Vol 10 (5) ◽  
pp. 1797 ◽  
Author(s):  
Mera Kartika Delimayanti ◽  
Bedy Purnama ◽  
Ngoc Giang Nguyen ◽  
Mohammad Reza Faisal ◽  
Kunti Robiatul Mahmudah ◽  
...  

Manual classification of sleep stage is a time-consuming but necessary step in the diagnosis and treatment of sleep disorders, and its automation has been an area of active study. The previous works have shown that low dimensional fast Fourier transform (FFT) features and many machine learning algorithms have been applied. In this paper, we demonstrate utilization of features extracted from EEG signals via FFT to improve the performance of automated sleep stage classification through machine learning methods. Unlike previous works using FFT, we incorporated thousands of FFT features in order to classify the sleep stages into 2–6 classes. Using the expanded version of Sleep-EDF dataset with 61 recordings, our method outperformed other state-of-the art methods. This result indicates that high dimensional FFT features in combination with a simple feature selection is effective for the improvement of automated sleep stage classification.


Author(s):  
Kristy Martin ◽  
Emily McLeod ◽  
Julien Périard ◽  
Ben Rattray ◽  
Richard Keegan ◽  
...  

Objective: In this review, we detail the impact of environmental stress on cognitive and military task performance and highlight any individual characteristics or interventions which may mitigate any negative effect. Background: Military personnel are often deployed in regions markedly different from their own, experiencing hot days, cold nights, and trips both above and below sea level. In spite of these stressors, high-level cognitive and operational performance must be maintained. Method: A systematic review of the electronic databases Medline (PubMed), EMBASE (Scopus), PsycINFO, and Web of Science was conducted from inception up to September 2018. Eligibility criteria included a healthy human cohort, an outcome of cognition or military task performance and assessment of an environmental condition. Results: The search returned 113,850 records, of which 124 were included in the systematic review. Thirty-one studies examined the impact of heat stress on cognition; 20 of cold stress; 59 of altitude exposure; and 18 of being below sea level. Conclusion: The severity and duration of exposure to the environmental stressor affects the degree to which cognitive performance can be impaired, as does the complexity of the cognitive task and the skill or familiarity of the individual performing the task. Application: Strategies to improve cognitive performance in extreme environmental conditions should focus on reducing the magnitude of the physiological and perceptual disturbance caused by the stressor. Strategies may include acclimatization and habituation, being well skilled on the task, and reducing sensations of thermal stress with approaches such as head and neck cooling.


2021 ◽  
Vol 9 (5) ◽  
pp. 1034
Author(s):  
Carlos Sabater ◽  
Lorena Ruiz ◽  
Abelardo Margolles

This study aimed to recover metagenome-assembled genomes (MAGs) from human fecal samples to characterize the glycosidase profiles of Bifidobacterium species exposed to different prebiotic oligosaccharides (galacto-oligosaccharides, fructo-oligosaccharides and human milk oligosaccharides, HMOs) as well as high-fiber diets. A total of 1806 MAGs were recovered from 487 infant and adult metagenomes. Unsupervised and supervised classification of glycosidases codified in MAGs using machine-learning algorithms allowed establishing characteristic hydrolytic profiles for B. adolescentis, B. bifidum, B. breve, B. longum and B. pseudocatenulatum, yielding classification rates above 90%. Glycosidase families GH5 44, GH32, and GH110 were characteristic of B. bifidum. The presence or absence of GH1, GH2, GH5 and GH20 was characteristic of B. adolescentis, B. breve and B. pseudocatenulatum, while families GH1 and GH30 were relevant in MAGs from B. longum. These characteristic profiles allowed discriminating bifidobacteria regardless of prebiotic exposure. Correlation analysis of glycosidase activities suggests strong associations between glycosidase families comprising HMOs-degrading enzymes, which are often found in MAGs from the same species. Mathematical models here proposed may contribute to a better understanding of the carbohydrate metabolism of some common bifidobacteria species and could be extrapolated to other microorganisms of interest in future studies.


Sign in / Sign up

Export Citation Format

Share Document