scholarly journals Observer-Based Control of LPV Systems with Input Delay and Saturation and Matched Disturbances via a Generalized Sector Condition

2021 ◽  
Vol 2 ◽  
Author(s):  
Saeed Salavati ◽  
Karolos Grigoriadis ◽  
Matthew Franchek

This paper examines the control design for parameter-dependent input-delay linear parameter-varying (LPV) systems with saturation constraints and matched input disturbances. A gain-scheduled dynamic output feedback controller, coupled with a disturbance observer to cancel out input disturbance effects, was augmented with an anti-windup compensator to locally stabilize the input-delay LPV system under saturation, model uncertainty, and exogenous disturbances. Sufficient delay-dependent conditions to asymptotically stabilize the closed-loop system were derived using Lyapunov-Krasovskii functionals and a modified generalized sector condition to address the input saturation nonlinearity. The level of disturbance rejection was characterized via the closed-loop induced L2-norm of the closed-loop system in the form of linear matrix inequality (LMI) constraints. The results are examined in the context of the mean arterial pressure (MAP) control in the clinical resuscitation of critical hypotensive patients. The MAP variation response to the injection of vasopressor drugs was modeled as an LPV system with a varying input delay and was susceptible to model uncertainty and input/output disturbances. A Bayesian filtering method known as the cubature Kalman filter (CKF) was used to estimate the instantaneous values of the parameters. The varying delay was estimated via a multiple-model approach. The proposed input-delay LPV control was validated in closed-loop simulations to demonstrate its merits and capabilities in the presence of drug administration constraints.

2021 ◽  
Vol 1 (4) ◽  
Author(s):  
Ark Dev ◽  
David Fernando Novella Rodríguez ◽  
Sumant Anand ◽  
Mrinal Kanti Sarkar

Abstract The letter proposes frequency stability in power systems with input delay. A closed loop system can be oscillatory or even unstable without the exact knowledge of delay. Therefore, it is desirable to design a control scheme which is based on the estimation of unknown delay. The proposed design consists of an infinite dimensional observer with an adaptive time delay estimation and a sliding mode controller (SMC). The merit of the proposed concept lies in the fact that the unknown delay is valued by just estimating the smallest delay segment. The controller input is obtained from a set of sequential observers that predicts the system states and ensures asymptotic stability of the closed loop system with input delay estimation. The existence of sliding mode and the closed loop system stability is proved thanks to the Lyapunov and Lyapunov–Krasovskii candidate functionals, respectively. Simulation results confirm the effectiveness of the proposed design.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1376-P
Author(s):  
GREGORY P. FORLENZA ◽  
BRUCE BUCKINGHAM ◽  
JENNIFER SHERR ◽  
THOMAS A. PEYSER ◽  
JOON BOK LEE ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1066-P
Author(s):  
HALIS K. AKTURK ◽  
DOMINIQUE A. GIORDANO ◽  
HAL JOSEPH ◽  
SATISH K. GARG ◽  
JANET K. SNELL-BERGEON

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 207-OR
Author(s):  
BRUCE A. BUCKINGHAM ◽  
JENNIFER SHERR ◽  
GREGORY P. FORLENZA ◽  
THOMAS A. PEYSER ◽  
JOON BOK LEE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document