scholarly journals Autoimmunity in Pulmonary Arterial Hypertension: Evidence for Local Immunoglobulin Production

2021 ◽  
Vol 8 ◽  
Author(s):  
Ting Shu ◽  
Yanjiang Xing ◽  
Jing Wang

Pulmonary arterial hypertension (PAH) is a progressive life-threatening disease. The notion that autoimmunity is associated with PAH is widely recognized by the observations that patients with connective tissue diseases or virus infections are more susceptible to PAH. However, growing evidence supports that the patients with idiopathic PAH (IPAH) with no autoimmune diseases also have auto-antibodies. Anti-inflammatory therapy shows less help in decreasing auto-antibodies, therefore, elucidating the process of immunoglobulin production is in great need. Maladaptive immune response in lung tissues is considered implicating in the local auto-antibodies production in patients with IPAH. In this review, we will discuss the specific cell types involved in the lung in situ immune response, the potential auto-antigens, and the contribution of local immunoglobulin production in PAH development, providing a theoretical basis for drug development and precise treatment in patients with PAH.

2020 ◽  
Vol 55 (4) ◽  
pp. 1901761 ◽  
Author(s):  
Catherine E. Simpson ◽  
Jenny Y. Chen ◽  
Rachel L. Damico ◽  
Paul M. Hassoun ◽  
Lisa J. Martin ◽  
...  

The pro-inflammatory cytokine interleukin (IL)-6 has been associated with outcomes in small pulmonary arterial hypertension (PAH) cohorts composed largely of patients with severe idiopathic PAH (IPAH). It is unclear whether IL-6 is a marker of critical illness or a mechanistic biomarker of pulmonary vascular remodelling. We hypothesised that IL-6 is produced by pulmonary vascular cells and sought to explore IL-6 associations with phenotypes and outcomes across diverse subtypes in a large PAH cohort.IL-6 protein and gene expression levels were measured in cultured pulmonary artery smooth muscle cells (PASMCs) and endothelial cells (PAECs) from PAH patients and healthy controls. Serum IL-6 was measured in 2017 well-characterised PAH subjects representing each PAH subgroup. Relationships between IL-6 levels, clinical variables, and mortality were analysed using regression models.Significantly higher IL-6 protein and gene expression levels were produced by PASMCs than by PAECs in PAH (p<0.001), while there was no difference in IL-6 between cell types in controls. Serum IL-6 was highest in PAH related to portal hypertension and connective tissue diseases (CTD-PAH). In multivariable modelling, serum IL-6 was associated with survival in the overall cohort (hazard ratio 1.22, 95% CI 1.08–1.38; p<0.01) and in IPAH, but not in CTD-PAH. IL-6 remained associated with survival in low-risk subgroups of subjects with mild disease.IL-6 is released from PASMCs, and circulating IL-6 is associated with specific clinical phenotypes and outcomes in various PAH subgroups, including subjects with less severe disease. IL-6 is a mechanistic biomarker, and thus a potential therapeutic target, in certain PAH subgroups.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1859.1-1860
Author(s):  
Y. Zhang ◽  
N. Zhang ◽  
Y. Zhu ◽  
Q. Wang ◽  
L. Zhou

Background:Pulmonary arterial hypertension (PAH) is a fatal complication of connective tissue diseases (CTDs). Chest CT has been increasingly used in the evaluation of patients with suspected PH noninvasively but there is a paucity of studies.Objectives:Our study was aimed to investigate the cross-sectional area (CSA) of small pulmonary vessels on chest CT for the diagnosis and prognosis of CTD-PAH.Methods:This retrospective study analyzed the data of thirty-four patients with CTD-PAH who were diagnosed by right heart catheterization (RHC) and underwent chest CT between March 2011 and October 2019. We measured the percentage of total CSA of vessels<5 mm2and 5-10 mm2as a percentage of total lung area (%CSA<5and %CSA5-10) on Chest CT. Furthermore, the association of %CSA with mean pulmonary artery pressure (mPAP) was also investigated. Besides, these patients were followed up until October 2019, and Kaplan-Meier survival curves were generated for the evaluation of prognosis.Results:Patients with CTD-PAH had significantly higher %CSA5-10than CTD-nPAH (p=0.001), %CSA5-10in CTD-S-PAH and IPAH was significantly higher than CTD-LM-PAH and COPD-PH (p<0.01). There was a positive correlation between %CSA5-10and mPAP in CTD-PAH (r=0.447, p=0.008). Considering %CSA5-10above 0.38 as a threshold level, the sensitivity and specificity were found to be 0.824 and 0.706, respectively. Patients with %CSA5-10≥0.38 had a lower survival rate than those with %CSA5-10<0.38 (p=0.049).Conclusion:Quantitative parameter, %CSA5-10on Chest CT might serve a crucial differential diagnostic tool for different types of PH. %CSA5-10≥0.38 is a prognostic indicator for evaluation of CTD-PAH.References:[1]Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. Rev Esp Cardiol (Engl Ed). 2016;69(2):177.[2]Siddiqui I, Rajagopal S, Brucker A, et al. Clinical and Echocardiographic Predictors of Outcomes in Patients With Pulmonary Hypertension. Am J Cardiol. 2018;122(5):872-878.[3]Coste F, Dournes G, Dromer C, et al. CT evaluation of small pulmonary vessels area in patients with COPD with severe pulmonary hypertension. Thorax. 2016;71(9):830-837.[4]Freed BH, Collins JD, Francois CJ, et al. MR and CT Imaging for the Evaluation of Pulmonary Hypertension. JACC Cardiovasc Imaging. 2016;9(6):715-732.[5]Pietra GG, Capron F, Stewart S, et al. Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol. 2004;43(12 Suppl S):25S-32S.[6]Zanatta E, Polito P, Famoso G, et al. Pulmonary arterial hypertension in connective tissue disorders: Pathophysiology and treatment. Exp Biol Med (Maywood). 2019;244(2):120-131.[7]Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115(1):165-175.[8]Thenappan T, Ormiston ML, Ryan JJ, Archer SL. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ. 2018;360:j5492.[9]Thompson AAR, Lawrie A. Targeting Vascular Remodeling to Treat Pulmonary Arterial Hypertension. Trends Mol Med. 2017;23(1):31-45.[10]Shimoda LA, Laurie SS. Vascular remodeling in pulmonary hypertension. J Mol Med (Berl). 2013;91(3):297-309.[11]Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest. 2012;122(12):4306-4313.[12]Seeger W, Adir Y, Barbera JA, et al. Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol. 2013;62(25 Suppl):D109-116.Acknowledgments:Thanks to all patients involved in this retrospective study. Thanks go to every participant who participated in this study for their enduring efforts in working with participants to complete the study. Thanks to Liangmin Wei for helping us with statistics analysis.Disclosure of Interests:None declared


2020 ◽  
Vol 29 (155) ◽  
pp. 190089 ◽  
Author(s):  
Daniela Knafl ◽  
Christian Gerges ◽  
Charles H. King ◽  
Marc Humbert ◽  
Amaya L. Bustinduy

Schistosomiasis-associated pulmonary arterial hypertension (Sch-PAH) is a life-threatening complication of chronic hepatosplenic schistosomiasis. It is suggested to be the leading cause of pulmonary arterial hypertension (PAH) worldwide. However, pathophysiological data on Sch-PAH are scarce. We examined the hypothesis that there are pronounced similarities in pathophysiology, haemodynamics, and survival of Sch-PAH and idiopathic PAH (iPAH).This systematic review and meta-analysis was registered in the PROSPERO database (identifier CRD42018104066). A systematic search and review of the literature was performed according to PRISMA guidelines for studies published between 01 January 1990 and 29 June 2018.For Sch-PAH, 18 studies evaluating pathophysiological mechanisms, eight studies on haemodynamics (n=277), and three studies on survival (n=191) were identified. 16 clinical registries reporting data on haemodynamics and survival including a total of 5792 patients with iPAH were included for comparison. Proinflammatory molecular pathways are involved in both Sch-PAH and iPAH. The transforming growth factor (TGF)-β signalling pathway is upregulated in Sch-PAH and iPAH. While there was no difference in mean pulmonary artery pressure (54±17 mmHg versus 55±15 mmHg, p=0.29), cardiac output (4.4±1.3 L·min−1versus 4.1±1.4 L·min−1, p=0.046), and cardiac index (2.6±0.7 L·min−1·m−2versus 2.3±0.8 L·min−1·m−2, p<0.001) were significantly higher in Sch-PAH compared to iPAH, resulting in a lower pulmonary vascular resistance in Sch-PAH (10±6 Woods units versus 13±7 Woods units, p<0.001). 1- and 3-year survival were significantly better in the Sch-PAH group (p<0.001).Sch-PAH and iPAH share common pathophysiological mechanisms related to inflammation and the TGF-β signalling pathway. Patients with Sch-PAH show a significantly better haemodynamic profile and survival than patients with iPAH.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Atiya Dhala

Pulmonary arterial hypertension (PAH) is commonly associated with connective tissue diseases (CTDs) including systemic sclerosis and systemic lupus erythematosus (SLE). The prevalence of PAH in SLE is estimated to be 0.5% to 17.5%. The pathophysiology of PAH involves multiple mechanisms from vasculitis andin-situthrombosis to interstitial pulmonary fibrosis which increases pulmonary vascular resistance, potentially leading to right heart failure. Immune and inflammatory mechanisms may play a significant role in the pathogenesis or progression of PAH in patients with CTDs, establishing a role for anti-inflammatory and immunosuppressive therapies. The leading predictors of PAH in SLE are Raynaud phenomenon, anti-U1RNP antibody, and anticardiolipin antibody positivity. The first-line of diagnostic testing for patients with suspected SLE-associated PAH (SLE-aPAH) involves obtaining a Doppler echocardiogram. Once the diagnosis is confirmed by right heart catheterization, SLE-aPAH patients are generally treated with oxygen, anticoagulants, and vasodilators. Although the prognosis and therapeutic responsiveness of these patients have improved with the addition of intensive immunosuppressive therapies, these treatments are still largely unproven. Recent data put the one-year survival rate for SLE-aPAH patients at 94%. Pregnant women are most at risk of dying due to undiagnosed SLE-aPAH, and screening should be considered essential in this population.


Sign in / Sign up

Export Citation Format

Share Document