scholarly journals Case Report: Whole Exome Sequencing Identifies Compound Heterozygous Variants in TSFM Gene Causing Juvenile Hypertrophic Cardiomyopathy

2022 ◽  
Vol 8 ◽  
Author(s):  
Jamie O. Yang ◽  
Hapet Shaybekyan ◽  
Yan Zhao ◽  
Xuedong Kang ◽  
Gregory A. Fishbein ◽  
...  

We report a case of hypertrophic cardiomyopathy and lactic acidosis in a 3-year-old female. Cardiac and skeletal muscles biopsies exhibited mitochondrial hyperplasia with decreased complex IV activity. Whole exome sequencing identified compound heterozygous variants, p.Arg333Trp and p.Val119Leu, in TSFM, a nuclear gene that encodes a mitochondrial translation elongation factor, resulting in impaired oxidative phosphorylation and juvenile hypertrophic cardiomyopathy.

2021 ◽  
pp. 1-6
Author(s):  
Mohammad Mahdavi ◽  
Neda Mohsen-Pour ◽  
Majid Maleki ◽  
Mahshid Hesami ◽  
Niloofar Naderi ◽  
...  

Abstract Background: Salih myopathy, characterised by both congenital myopathy and fatal dilated cardiomyopathy, is an inherited muscle disorder that affects skeletal and cardiac muscles. TTN has been identified as the main cause of this myopathy, the enormous size of this gene poses a formidable challenge to molecular genetic diagnostics. Method: In the present study, whole-exome sequencing, cardiac MRI, and metabolic parameter assessment were performed to investigate the genetic causes of Salih myopathy in a consanguineous Iranian family who presented with titinopathy involving both skeletal and heart muscles in an autosomal recessive inheritance pattern. Results: Two missense variants of TTN gene (NM_001267550.2), namely c.61280A>C (p. Gln20427Pro) and c.54970G>A (p. Gly18324Ser), were detected and segregations were confirmed by polymerase chain reaction-based Sanger sequencing. Conclusions: The compound heterozygous variants, c.61280A>C, (p. Gln20427Pro) and c.54970G>A, (p. Gly18324Ser) in the TTN gene appear to be the cause of Salih myopathy and dilated cardiomyopathy in the family presented. Whole-exome sequencing is an effective molecular diagnostic tool to identify the causative genetic variants of large genes such as TTN.


2017 ◽  
Vol 5 (3) ◽  
pp. 295-302 ◽  
Author(s):  
Patrick R. Blackburn ◽  
Duygu Selcen ◽  
Jennifer M. Gass ◽  
Jessica L. Jackson ◽  
Sarah Macklin ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hosneara Akter ◽  
Mohammad Shahnoor Hossain ◽  
Nushrat Jahan Dity ◽  
Md. Atikur Rahaman ◽  
K. M. Furkan Uddin ◽  
...  

AbstractCollectively, rare genetic diseases affect a significant number of individuals worldwide. In this study, we have conducted whole-exome sequencing (WES) and identified underlying pathogenic or likely pathogenic variants in five children with rare genetic diseases. We present evidence for disease-causing autosomal recessive variants in a range of disease-associated genes such as DHH-associated 46,XY gonadal dysgenesis (GD) or 46,XY sex reversal 7, GNPTAB-associated mucolipidosis II alpha/beta (ML II), BBS1-associated Bardet–Biedl Syndrome (BBS), SURF1-associated Leigh Syndrome (LS) and AP4B1-associated spastic paraplegia-47 (SPG47) in unrelated affected members from Bangladesh. Our analysis pipeline detected three homozygous mutations, including a novel c. 863 G > C (p.Pro288Arg) variant in DHH, and two compound heterozygous variants, including two novel variants: c.2972dupT (p.Met991Ilefs*) in GNPTAB and c.229 G > C (p.Gly77Arg) in SURF1. All mutations were validated by Sanger sequencing. Collectively, this study adds to the genetic heterogeneity of rare genetic diseases and is the first report elucidating the genetic profile of (consanguineous and nonconsanguineous) rare genetic diseases in the Bangladesh population.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Chuphong Thongnak ◽  
Pornprot Limprasert ◽  
Duangkamol Tangviriyapaiboon ◽  
Suchaya Silvilairat ◽  
Apichaya Puangpetch ◽  
...  

Background. Congenital heart block is characterized by blockage of electrical impulses from the atrioventricular node (AV node) to the ventricles. This blockage can be caused by ion channel impairment that is the result of genetic variation. This study aimed to investigate the possible causative variants in a Thai family with complete heart block by using whole exome sequencing.Methods. Genomic DNA was collected from a family consisting of five family members in three generations in which one of three children in generation III had complete heart block. Whole exome sequencing was performed on one complete heart block affected child and one unaffected sibling. Bioinformatics was used to identify annotated and filtered variants. Candidate variants were validated and the segregation analysis of other family members was performed.Results. This study identified compound heterozygous variants, c.101G>A and c.3832G>A, in theSCN5Agene and c.28730C>T in theTTNgene.Conclusions. Compound heterozygous variants in theSCN5Agene were found in the complete heart block affected child but these two variants were found only in the this affected sibling and were not found in other unaffected family members. Hence, these variants in theSCN5Agene were the most possible disease-causing variants in this family.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Shao-Wen Wu ◽  
Lin Li ◽  
Fan Feng ◽  
Li Wang ◽  
Yuan-Yuan Kong ◽  
...  

Abstract Background Wiedemann-Rautenstrauch syndrome (WRS) is a rare autosomal recessive neonatal progeroid disorder characterized by prenatal and postnatal growth retardation, short stature, a progeroid appearance, hypotonia, and mental impairment. Case presentation A 6-year-old patient, who initially presented with multiple postnatal abnormalities, facial dysplasia, micrognathia, skull appearance, hallux valgus, and congenital dislocation of the hip, was recruited in this study. The patient was initially diagnosed with progeria. The mother of the patient had abnormal fetal development during her second pregnancy check-up, and the clinical phenotype of the fetus was similar to that of the patient. Whole-exome sequencing (WES) of the patient was performed, and POLR3B compound heterozygous variants—c.2191G > C:p.E731Q and c.3046G > A:p.V1016M—were identified in the patient. Using Sanger sequencing, we found that the phenotypes and genotypes were segregated within the pedigree. These two variants are novel and not found in the gnomAD and 1000 Genomes databases. The two mutation sites are highly conserved between humans and zebrafish. Conclusions Our study not only identified a novel WRS-associated gene, POLR3B, but also broadened the mutational and phenotypic spectra of POLR3B. Furthermore, WES may be useful for identifying rare disease-related genetic variants.


Sign in / Sign up

Export Citation Format

Share Document