scholarly journals Complementary Approaches Towards a Universal Model of Glacier Surges

2021 ◽  
Vol 9 ◽  
Author(s):  
Yoram Terleth ◽  
Ward J. J. Van Pelt ◽  
Veijo A. Pohjola ◽  
Rickard Pettersson

Although many convincing, diverse, and sometimes competing models of glacier surging have been proposed, the observed behavior of surging glaciers does not fit into distinct categories, and suggests the presence of a universal mechanism driving all surges. On the one hand, recent simulations of oscillatory flow behavior through the description of transient basal drag hint at a fundamental underlying process. On the other hand, the proposition of a unified model of oscillatory flow through the concept of enthalpy adopts a systems based view, in an attempt to rather unify different mechanisms through a single universal measure. While these two general approaches differ in perspective, they are not mutually exclusive, and seem likely to complement each other. A framework incorporating both approaches would see the mechanics of basal drag describing ice flow velocity and surge propagation as a function of forcing by conditions at the glacier bed, in turn modulated through the unified measure of enthalpy.

Author(s):  
Daniel Riedmüller ◽  
Jan Sousek ◽  
Michael Pfitzner

This paper reports on various effects on the flow through rotating radial holes (centrifugal, centripetal) in conjunction with the geometries of hole and surrounding annuli. The aerodynamic behavior of radial rotating holes is different from the one of axial and stationary holes due to the presence of centrifugal and Coriolis forces acting in the main flow direction. Furthermore, the geometry of the inlet and outlet region is often influencing the separation behavior of the flow at the holes. To investigate the flow phenomena and the discharge behavior of these radial holes in detail, an existing test rig containing two independently rotating shafts (co- and counter rotating) was used. Experimental and numerical investigations have been performed for both flow directions through the radial holes (centripetal and centrifugal), for different hole geometries (oblong holes and round holes), inlet types (rounded and sharp), length to diameter ratios (variation of either length or diameter) and gap widths between inner and outer shaft. For each of these geometrical variations flow properties have been varied such as pressure ratio across the holes, incident Mach number and rotational speed of both shafts. To enable large parametric studies and grid independency studies an optimization model with completely automatic grid generation, CFD simulation and post-processing has been set up. As a main result of the current studies it was found, that the shaft to hole diameter is another parameter of interest for the flow behavior through shaft holes. For a centripetal flow through the shaft holes and a decreasing inner gap width, the discharge coefficient was observed to increase initially before it drops significantly. In addition, measurements of centripetal flow though oblong holes revealed higher discharge coefficient in comparison with round holes and equal length to diameter ratio.


1992 ◽  
Vol 114 (1) ◽  
pp. 14-30 ◽  
Author(s):  
E. F. Caetano ◽  
O. Shoham ◽  
J. P. Brill

Mechanistic models have been developed for each of the existing two-phase flow patterns in an annulus, namely bubble flow, dispersed bubble flow, slug flow, and annular flow. These models are based on two-phase flow physical phenomena and incorporate annulus characteristics such as casing and tubing diameters and degree of eccentricity. The models also apply the new predictive means for friction factor and Taylor bubble rise velocity presented in Part I. Given a set of flow conditions, the existing flow pattern in the system can be predicted. The developed models are applied next for predicting the flow behavior, including the average volumetric liquid holdup and the average total pressure gradient for the existing flow pattern. In general, good agreement was observed between the experimental data and model predictions.


Author(s):  
B. M. Minchew ◽  
C. R. Meyer

Glacier surges are quasi-periodic episodes of rapid ice flow that arise from increases in slip rate at the ice–bed interface. The mechanisms that trigger and sustain surges are not well understood. Here, we develop a new model of incipient surge motion for glaciers underlain by sediments to explore how surges may arise from slip instabilities within a thin layer of saturated, deforming subglacial till. Our model represents the evolution of internal friction, porosity and pore water pressure within the till as functions of the rate and history of shear deformation, and couples the till mechanics to a simple ice-flow model. Changes in pore water pressure govern incipient surge motion, with less permeable till facilitating surging because dilation-driven reductions in pore water pressure slow the rate at which till tends towards a new steady state, thereby allowing time for the glacier to thin dynamically. The reduction of overburden (and thus effective) pressure at the bed caused by dynamic thinning of the glacier sustains surge acceleration in our model. The need for changes in both the hydromechanical properties of the till and the thickness of the glacier creates restrictive conditions for surge motion that are consistent with the rarity of surge-type glaciers and their geographical clustering.


1992 ◽  
Vol 75 (3_suppl) ◽  
pp. 1124-1126
Author(s):  
John F. Walsh

A statistical test is developed based on the comparison of sums of squared errors associated with two competing models. A model based on cell means is compared to a representation that specifies the means for the treatment conditions. Comparing models is more general than the traditional H0 in analysis of variance wherein all the cell means are assumed equal. The test statistic, Proportional Increase in Error, is computed using the SAS statistical system.


2010 ◽  
Vol 11 (4) ◽  
pp. 2350-2365 ◽  
Author(s):  
Marco A. Fontelos ◽  
Ana I. Muñoz ◽  
Emanuele Schiavi

1999 ◽  
Vol 39 (9) ◽  
pp. 95-103 ◽  
Author(s):  
S. Djordjević ◽  
D. Prodanović ◽  
Č. Maksimović

The paper presents the development of the field of urban drainage modelling known as dual drainage - an approach to rainfaill runoff simulation in which the numerical model takes into account not only the flow through the sewer system, but also the flow on the surface. The steps in model development are described, and necessary data, assumptions used and operations to be performed using GIS are discussed. The numerical model simultaneously handles the full dynamic equations of flow through the sewer system and simplified equations of the surface flow. The surface excess water (due to the limited capacity of inlets or to the hydraulic head in the sewer system reaching the ground level) is routed to the neighbour subcatchment (not necessarily the one attached to the downstream network node), using surface retentions, if any.


2015 ◽  
Vol 11 (10) ◽  
pp. 1395-1416 ◽  
Author(s):  
S. Fujita ◽  
F. Parrenin ◽  
M. Severi ◽  
H. Motoyama ◽  
E. W. Wolff

Abstract. Two deep ice cores, Dome Fuji (DF) and EPICA Dome C (EDC), drilled at remote dome summits in Antarctica, were volcanically synchronized to improve our understanding of their chronologies. Within the past 216 kyr, 1401 volcanic tie points have been identified. DFO2006 is the chronology for the DF core that strictly follows O2 / N2 age constraints with interpolation using an ice flow model. AICC2012 is the chronology for five cores, including the EDC core, and is characterized by glaciological approaches combining ice flow modelling with various age markers. A precise comparison between the two chronologies was performed. The age differences between them are within 2 kyr, except at Marine Isotope Stage (MIS) 5. DFO2006 gives ages older than AICC2012, with peak values of 4.5 and 3.1 kyr at MIS 5d and MIS 5b, respectively. Accordingly, the ratios of duration (AICC2012 / DFO2006) range between 1.4 at MIS 5e and 0.7 at MIS 5a. When making a comparison with accurately dated speleothem records, the age of DFO2006 agrees well at MIS 5d, while the age of AICC2012 agrees well at MIS 5b, supporting their accuracy at these stages. In addition, we found that glaciological approaches tend to give chronologies with younger ages and with longer durations than age markers suggest at MIS 5d–6. Therefore, we hypothesize that the causes of the DFO2006–AICC2012 age differences at MIS 5 are (i) overestimation in surface mass balance at around MIS 5d–6 in the glaciological approach and (ii) an error in one of the O2 / N2 age constraints by ~ 3 kyr at MIS 5b. Overall, we improved our knowledge of the timing and duration of climatic stages at MIS 5. This new understanding will be incorporated into the production of the next common age scale. Additionally, we found that the deuterium signals of ice, δDice, at DF tends to lead the one at EDC, with the DF lead being more pronounced during cold periods. The lead of DF is by +710 years (maximum) at MIS 5d, −230 years (minimum) at MIS 7a and +60 to +126 years on average.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Zhenglun Alan Wei ◽  
Zhongquan Charlie Zheng ◽  
Xiaofan Yang

A parallel implementation of an immersed-boundary (IB) method is presented for low Reynolds number flow simulations in a representative elementary volume (REV) of porous media that are composed of a periodic array of regularly arranged structures. The material of the structure in the REV can be solid (impermeable) or microporous (permeable). Flows both outside and inside the microporous media are computed simultaneously by using an IB method to solve a combination of the Navier–Stokes equation (outside the microporous medium) and the Zwikker–Kosten equation (inside the microporous medium). The numerical simulation is firstly validated using flow through the REVs of impermeable structures, including square rods, circular rods, cubes, and spheres. The resultant pressure gradient over the REVs is compared with analytical solutions of the Ergun equation or Darcy–Forchheimer law. The good agreements demonstrate the validity of the numerical method to simulate the macroscopic flow behavior in porous media. In addition, with the assistance of a scientific parallel computational library, PETSc, good parallel performances are achieved. Finally, the IB method is extended to simulate species transport by coupling with the REV flow simulation. The species sorption behaviors in an REV with impermeable/solid and permeable/microporous materials are then studied.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Malek Ennaifer ◽  
Taroub Bouzaiene ◽  
Moncef Chouaibi ◽  
Moktar Hamdi

Background. The decoction of Pelargonium graveolens yields an antioxidant-rich extract and a water-soluble polysaccharide. This study aims (1) to investigate the effect of process parameters (extraction time and temperature) on the antioxidant activity of the decoction and the extraction yield of CPGP by response methodology and (2) to study the chemical properties of the optimized decoction and rheological properties of the corresponding extracted polysaccharide. Results. The antioxidant-rich decoction contained about 19.76 ± 0.41 mg RE/g DM of flavonoids and 5.31 ± 0.56 mg CE/gDM of condensed tannins. The crude Pelargonium graveolens polysaccharide (CPGP) contained 87.27 % of sugar. Furthermore, the CPGP solutions (0.5%, 1%, and 2%) exhibited shear-thinning or pseudoplastic flow behavior. A central composite design (CDD) was applied to assess the effects of temperature and time on the antioxidant activity of the decoction, on the one hand, and on water-soluble polysaccharide yield, on the other. The decoction optimization of Pelargonium graveolens aimed to use less energy (93°C for 11 minutes) leading to the highest values of decoction phenolic content (33.01 ±0.49 mg GAE/gDM) and DPPH scavenging activity (136.10 ± 0.62 mg TXE/gDM) and the highest values of CPGP yield (6.97%). Conclusion. The obtained results suggest that the CPGP rheological characteristics are suitable for applications in many industries, especially food. The values of optimal conditions showed that Pelargonium graveolens decoction operation could have multiple uses, especially for consuming less energy.


Sign in / Sign up

Export Citation Format

Share Document