scholarly journals The Occurrence of Bedding-Parallel Fibrous Calcite Veins in Permian Siliciclastic and Carbonate Rocks in Central Thailand

2022 ◽  
Vol 9 ◽  
Author(s):  
Piyaphong Chenrai ◽  
Thitiphan Assawincharoenkij ◽  
John Warren ◽  
Sannaporn Sa-nguankaew ◽  
Sriamara Meepring ◽  
...  

Bedding-parallel fibrous calcite veins crop out at two Permian carbonate localities in the Phetchabun area, central Thailand, within the Nam Duk and Khao Khwang Formations. Samples are studied to determine their petrographic, geochemical and isotopic character, depositional and diagenetic associations and controls on the formation of fibrous calcite across the region. Biomarker and non-biomarker parameters are used to interpret organic matter sources in the vein-hosting units, the depositional environment and levels of source rock maturation in order to evaluate source rock potential in the two Formations. Carbon and oxygen isotope values of the veins and the host are determined to discuss the source of carbonates and diagenetic conditions. The petroleum assessment from the Khao Khwang and Nam Duk Formations suggests that both Formations are a petroleum potential source rock with type II/III kerogen deposited in an estuarine environment or a shallow marine environment and a slope-to-basin marine environment or an open marine environment, respectively. The bedding-parallel fibrous calcite veins from the Khao Khwang and Nam Duk Formations are divided into two types: 1) beef and, 2) cone-in-cone veins. The carbon and oxygen isotope compositions from the fibrous calcite veins suggest that the calcite veins could be precipitated from a carbon source generated in the microbial methanogenic zone. The results in this study provide a better understanding of the interrelationship between the bedding-parallel fibrous calcite veins and petroleum source rock potential.

2021 ◽  
Vol 325 ◽  
pp. 08013
Author(s):  
Mawar Towan Lestari Ramli ◽  
Hendra Amijaya ◽  
Akmaluddin

Research on the Late Miocene of Pandua Formation shale in Andowia area, Southeast Sulawesi is fundamental because it is considered to have the potential as a source rock in Manui Basin. This study aimed to determine the lithofacies and its potential as petroleum source rock using megascopic, petrographic, and total organic carbon analyses in Pandua Formation shale. Based on the megascopic and petrographic analysis of outcrops, the shale can be subdivided into 11 lithofacies consists of clayey shale, massive claystone, clastic detritus-rich claystone, massive mudstone, mica-rich mudstone, iron oxide-rich mudstone, low-angle laminated mudstone, massive siltstone, carbon-rich massive siltstone, laminated siltstone, and carbon-rich laminated siltstone. The results of the analysis of 19 samples of shale showed that the total organic carbon (TOC) content was classified as poor to excellent (<0.5%- >4%). The lithofacies with a high concentration of TOC are carbon-rich massive siltstone and carbon-rich laminated siltstone. Both lithofacies were categorized as potentially excellent source rock which the TOC value content is 5.78% and 5.74%.The result implies the better understanding of the depositional environment and hydrocarbon accumulation potential of the Manui basin for future exploration.


2020 ◽  
Vol 45 (5) ◽  
Author(s):  
T. A. Adedosu ◽  
S. A. Alao ◽  
T.R. Ajayi ◽  
A. Akinlua

Gombe Formation is one of the promising potential source-rock of petroleum in the Gongola basin based on its appreciable amount of organic matter. The present study is therefore aimed at evaluating the hydrocarbon potential of Gombe Formation. Ditch-cutting samples were collected from the depth of 731.5 m to 1554.5 m from Gombe Formation that penetrated the Kolmani River-1 well. The source-rock potential was evaluated based on kerogen analysis and soluble organic matter content using Fourier Transform- Infra red spectroscopic (FT-IR) and Gas chromatography-Mass spectrometric (GC-MS) techniques respectively. There is presence of peak at 900-1000 cm-1 which is due to CH2 rocking vibration in long chain aliphatic substances, which is characteristic of liptinite macerals indicating good potential source-rock for oil and gas. The n-alkane ranges from C11-C33 maximizing at nC16 which suggests that the organic matter are majorly derived from marine organic matter. The Pr/Ph (1.49-1.92) shows that the organic matter was deposited under sub-oxic condition. The distribution of hopanes, homohopanes (C27-C29) steranes, (C0-C4) alkylated naphthalenes and (C0-C3) alkylated phenanthrenes indicate the presence of angiosperm, gymnosperm, algae, marine and bacteria input to the organic matter contained in the samples. Also the plot of DBT/P vs. Pr/Ph classifies the samples into zone 3 (i.e. marine shale and other lacustrine). Various maturity parameters computed from saturate biomarker and polycyclic aromatic hydrocarbon distributions shows that the samples are low mature with the moderately mature zone at the bottom (>1408.2 m) of Gombe Formation. In conclusion, the kerogen was probably derived from type II/III organic matter capable of generating both oil and gas and the moderately mature zone lies at the bottom of the Formation. Key words: Lacustrine, Gombe formation, Maturity, Hydrocarbon, Kerogen


2021 ◽  
Vol 5 (1) ◽  
pp. 50-59
Author(s):  
Ayad N. F. Edilbi ◽  
Kamal Kolo ◽  
Blind F. Khalid ◽  
Mardin N. Muhammad Salim ◽  
Sana A. Hamad ◽  
...  

This study reports on the petroleum potential of the Upper Triassic Baluti Formation in Bekhme-1 and Gulak-1 Wells from Akri¬-Bijeel Block within the Bekhme Anticline area, North of Erbil City. The area is a part of the Zagros Fold and Thrust Belt, and is locally situated within the High Folded Zone. Typically, the Baluti Formation is composed of gray and green shale calcareous dolomite with intercalations of thinly bedded dolomites, dolomitic limestones, and silicified limestones which in places are brecciated. The geochemical indicators obtained from Rock-Eval pyrolysis of Baluti samples gave Total Organic Carbon content (TOC wt. %) average values of 0.15 and 0.18 wt. % and potential hydrocarbon content (S2) average values of 0.78 mg HC/g rock and 0.58 mg HC/g rock for Bekhme-1 and Gulak-1 respectively, suggesting a source rock of poor potential. The type of organic matter is of mixed type II-III and III kerogens with an average Tmax value of 440 °C for both boreholes, exhibiting early to peak stage of thermal maturity. Considering the results of this study, it is concluded that Baluti Formation in the studied area can not be regarded as a potential source rock for hydrocarbon generation.


Author(s):  
Vượng Nguyễn Văn

The Dong Ho sedimentary formation consists of gravel, sand and sandstone, mudstone interbeded with asphalt layer or oil shale cropping out at Quang Ninh is considered as outcrop of petroleum potential source rock and correlated to source rock of the Cenozoic basins on the continental shelf of Southeast Asia. Geochemical investigation  of major and trace elements content variation from 14 typical samples selected from diferent layers leads to divide the Dong Ho formation into two parts: the lower part characterized by unclear variation while the upper part exposing a more clear trend. The paleoenvironmental proxy and the CIA, CIW, PIA and CPA indices of the Dong Ho formation revealed high weathering intensity. V/Ni and C/Cr s vary from 0.14 to 1.52; and from 0.02 to 0.52 respectively indicate to oxic depositional environment. The provenance of the Dong Ho sedimentary layers come from the recycling of sedimentary source rocks and deposited within freshwater lacustrine environment dominated with humid climate with estimated mean annual rainfall of 1533 mm / yr ± 181 mm before changing to wet and reductioin environment during diagenesis.


2021 ◽  
Author(s):  
Sergio Llana-Funez ◽  
Manuel Ignacio de Paz-Álvarez ◽  
Marco Antonio Lopez-Sanchez ◽  
Stefano M. Bernasconi ◽  
Juan Luis Alonso ◽  
...  

&lt;p&gt;The isotopic carbon and oxygen isotope composition of carbonates (&amp;#948;&lt;sup&gt;13&lt;/sup&gt;C and &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O), determined by temperature and the relative abundances of stable isotopes of both elements in water at the time the carbonate is precipitated, can be modified subsequently during geological processes that involve the recrystallization of carbonate. Temperature changes mostly affect &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O, while additional sources of carbon have a greater impact on &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C. Amongst the various processes that may alter the original isotopic signature of carbonate rocks are deformation processes, which can lead the dissolution and reprecipitation of carbonates during deformation, or the involvement of fluids of various origin during younger tectonic events.&lt;/p&gt;&lt;p&gt;Here, we present the results of isotope analysis in fault rocks from two distinct faults in the Cantabrian Zone (CZ) in northern Spain. It represents the foreland fold and thrust belt of the Variscan orogen in Iberia and is characterized by numerous and large thrust sheets that were emplaced during the Carboniferous. Subsequent rifting episodes in the Mesozoic and more recently Alpine North-South convergence produced the overprinting of some of the earlier Variscan structures. In all cases, brittle processes produced often similar-looking rocks as the fracturing occurred under upper crustal conditions, relatively close to the surface. Fluids involved during deformation on both cycles are likely to differ, so to evaluate alternative tools to distinguish the different cycles of fracturing in carbonates, a stable isotope analysis on carbon and oxygen was undertaken in two well-known structures in the region: the Somiedo nappe and the Ventaniella fault.&lt;/p&gt;&lt;p&gt;The Somiedo nappe is one of the largest thrust sheets in the Cantabrian Zone, with an estimated offset close to 20 km. The base of the thrust sheet is characterized by well-developed cataclasites and ultracataclasites that formed on Cambrian fine-grained dolostones. It has relatively minor vein activity associated, although the dolostones have been partially recrystallized. The Ventaniella fault is a dextral strike-slip structure cutting obliquely the Cantabrian Mountains. It runs for tens of kilometres inland and has an estimated offset of approximately 5 km. The fault zone in the studied area is characterized by the fracturing and dextral offset of Carboniferous micritic limestones and, more importantly, a relatively strong vein activity that formed a distributed network of calcite veins.&lt;/p&gt;&lt;p&gt;Cataclasite matrix and fragments, and associated veins were sampled for isotope analysis in the two fault zones. In both cases, the matrix has a signature which is intermediate between the undeformed rock and that of the veins. The fragments have a signature which is indistinguishable from the matrix, suggesting the reworking of the fault rock. The veins have a distinct pattern in both faults, but different from each other. Those related to the Ventaniella fault are mostly hydrothermal, with limited range in &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O and &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C, while the veins from the base of the Somiedo nappe have a larger range of &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C, but limited &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O variation.&lt;/p&gt;


2014 ◽  
Author(s):  
Miroslaw Slowakiewicz ◽  
Richard D. Pancost ◽  
Lisa Thomas ◽  
Maurice E. Tucker ◽  
Sher Mey Didi-Ooi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document