scholarly journals Trends and Climate Response in the Phenology of Crops in Northeast China

2021 ◽  
Vol 9 ◽  
Author(s):  
Dengpan Xiao ◽  
Yi Zhang ◽  
Huizi Bai ◽  
Jianzhao Tang

Crop phenology is the process of crop growth and yield formation, which is largely driven by climatic conditions. It is vital to investigate the shifts in crop phenological processes in response to climate variability. Previous studies often only explored the response of a single crop phenology to climate change, and lacked comparative studies on the climate response in different crop phenology. We intend to investigate the trends in phenological change of three typical crops (i.e., maize, rice and soybean) in Northeast China (NEC) and their response to climate change during 1981–2010. Its main purpose is to reveal the differences in the sensitivity of different crop phenology to key climate factors [e.g., mean temperature (T), accumulated precipitation (AP) and accumulated sunshine hours (AS) during the crop growth period]. We found that the three crops have different phenological changes and varying ranges, and significant spatial heterogeneity in phenological changes. The results indicated that the lengths of different crop growth stages [e.g., the vegetative growth period (VGP), the reproductive growth period (RGP) and the whole growth period (WGP)] were negatively correlated with T, especially in VGP and WGP. However, the lengths of growth period of the three crops were positively correlated with AP and AS. For each 1°C increase in T, the number of days shortened in WGP (about 5 days) was the largest, and that in RGP (less than 2 days) was the smallest. Therefore, the increases in T during past 3 decades have significantly shortened VGP and WGP of three crops, but had slight and inconsistent effects on RGP. Moreover, changes in AP has slight impact on the growth periods of maize and rice, and significantly shortened RGP and WGP of soybean. Changes in AS exerted important and inconsistent effects on the phenology of three crops. This study indicated that there are significant differences in the sensitivity and response of different crop phenology to climate factors. Therefore, in evaluating the response and adaptation of crops to climate change, comparison and comprehensive analysis of multiple crops are helpful to deeply understand the impact of climate change on crop production.

Author(s):  
Chunyi Wang ◽  
Hans W. Linderholm ◽  
Yanling Song ◽  
Fang Wang ◽  
Yanju Liu ◽  
...  

Climate change has a distinct impact on agriculture in China, particularly in the northeast, a key agriculture area sensitive to extreme hydroclimate events. Using monthly climate and agriculture data, the influence of drought on maize and soybean yields—two of the main crops in the region—in northeast China since 1961 to 2017 were investigated. The results showed that the temperature in the growing season increased by 1.0 °C from the period 1998–2017 to the period 1961–1980, while the annual precipitation decreased slightly. However, precipitation trends varied throughout the growing season (May–September), increasing slightly in May and June, but decreasing in July, August and September, associated with the weakening of the East Asian summer monsoon. Consequently, the annual and growing season drought frequency increased by 15%, and 25%, respectively, in the period 1998–2017 relative to the period 1961–1980. The highest drought frequency (55%) was observed in September. At the same time, the drought intensity during the growing season increased by 7.8%. The increasing frequency and intensity of drought had negative influences on the two crops. During moderate drought years in the period 1961–2017, 3.2% and 10.4% of the provincial maize and soybean yields were lost, respectively. However, during more severe drought years, losses doubled for soybean (21.8%), but increased more than four-fold for maize (14.0%). Moreover, in comparison to the period 1961–1980, a higher proportion of the yields were lost in the period 1998–2017, particularly for maize, which increased by 15% (increase for soybean was 2.4%). This change largely depends on increasing droughts in August and September, when both crops are in their filling stages. The impact of drought on maize and soybean production was different during different growth stages, where a strong relationship was noted between drought and yield loss of soybean in its filling stage. Given the sensitivity of maize and soybean yields in northeast China to drought, and the observed production trends, climate change will likely have significant negative impacts on productivity in the future.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 84
Author(s):  
Huanchu Liu ◽  
Hans Jacquemyn ◽  
Xingyuan He ◽  
Wei Chen ◽  
Yanqing Huang ◽  
...  

Human pressure on the environment and climate change are two important factors contributing to species decline and overall loss of biodiversity. Orchids may be particularly vulnerable to human-induced losses of habitat and the pervasive impact of global climate change. In this study, we simulated the extent of the suitable habitat of three species of the terrestrial orchid genus Cypripedium in northeast China and assessed the impact of human pressure and climate change on the future distribution of these species. Cypripedium represents a genus of long-lived terrestrial orchids that contains several species with great ornamental value. Severe habitat destruction and overcollection have led to major population declines in recent decades. Our results showed that at present the most suitable habitats of the three species can be found in Da Xing’an Ling, Xiao Xing’an Ling and in the Changbai Mountains. Human activity was predicted to have the largest impact on species distributions in the Changbai Mountains. In addition, climate change was predicted to lead to a shift in distribution towards higher elevations and to an increased fragmentation of suitable habitats of the three investigated Cypripedium species in the study area. These results will be valuable for decision makers to identify areas that are likely to maintain viable Cypripedium populations in the future and to develop conservation strategies to protect the remaining populations of these enigmatic orchid species.


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Qing Zhang ◽  
Wen Zhang ◽  
Yongqiang Yu ◽  
Tingting Li ◽  
Lijun Yu

Responses of crop growth to climate warming are fundamental to future food security. The response of crops to climate change may be subtly different at their growing stages. Close insights into the differentiated stage-dependent responses of crops are significantly important in making adaptive adjustments of crops’ phenological optimization and cultivar improvement in diverse cropping systems. Using the Agro-C model, we studied the influence of past climate warming on crops in typical cropping systems in China. The results showed that while the temperature had increased distinctly from the 1960s to 2000s, the temperature frequency distributions in the growth season of crops moved to the high-temperature direction. The low temperature days during the crop growth periods that suppress crop growth decreased in the winter wheat area in North and East China, rice and maize areas in Northeast China, and the optimum temperature days increased significantly. As a result, the above ground biomass (AGB) of rice and maize in Northeast China and winter wheat in North and East China increased distinctly, while that of rice in South China had no significant change. A comparison of the key growth periods before and after heading (silking) showed that the warming before heading (silking) made a great contribution to the increase in the AGB, especially for winter wheat.


2021 ◽  
Author(s):  
Takahiro Oyama ◽  
Jun'ya Takakura ◽  
Minoru Fujii ◽  
Kenichi Nakajima ◽  
Yasuaki Hijioka

Abstract There are concerns about the impact of climate change on Olympic Games, especially endurance events, such as marathons. In recent competitions, many marathon runners dropped out of their races due to extreme heat, and it is expected that more areas will be unable to host the Olympic Games due to climate change. Here, we show the feasibility of the Olympic marathon considering the variations in climate factors, socioeconomic conditions, and adaptation measures. The number of current possible host cities will decline by up to 24% worldwide by the late 21st century. Dozens of emerging cities, especially in Asia, will not be capable of hosting the marathon under the highest emission scenario. Moving the marathon from August to October and holding the games in multiple cities in the country are effective measures, and they should be considered if we are to maintain the regional diversity of the games.


2022 ◽  
Vol 9 ◽  
Author(s):  
Peijun Ju ◽  
Wenchao Yan ◽  
Jianliang Liu ◽  
Xinwei Liu ◽  
Liangfeng Liu ◽  
...  

As a sensitive, observable, and comprehensive indicator of climate change, plant phenology has become a vital topic of global change. Studies about plant phenology and its responses to climate change in natural ecosystems have drawn attention to the effects of human activities on phenology in/around urban regions. The key factors and mechanisms of phenological and human factors in the process of urbanization are still unclear. In this study, we analyzed variations in xylophyta phenology in densely populated cities during the fast urbanization period of China (from 1963 to 1988). We assessed the length of the growing season affected by the temperature and precipitation. Temperature increased the length of the growing season in most regions, while precipitation had the opposite effect. Moreover, the plant-growing season is more sensitive to preseason climate factors than to annual average climate factors. The increased population reduced the length of the growing season, while the growing GDP increased the length of the growing season in most regions (8 out of 13). By analyzing the impact of the industry ratio, we found that the correlation between the urban management of emerging cities (e.g., Chongqing, Zhejiang, and Guizhou) and the growing season is more significant, and the impact is substantial. In contrast, urban management in most areas with vigorously developed heavy industry (e.g., Heilongjiang, Liaoning, and Beijing) has a weak and insignificant effect on plant phenology. These results indicate that different urban development patterns can influence urban plant phenology. Our results provide some support and new thoughts for future research on urban plant phenology.


2020 ◽  
Vol 48 (2) ◽  
pp. 1057-1069
Author(s):  
Radu POPESCU ◽  
Neculae ȘOFLETEA

The research carried out was aimed to assessing the phenological behavior of beech (Fagus sylvatica L.) in the southwestern area of the Carpathians, in submesothermal forest sites, differentiated from the majority mesothermal ones of this species. The data obtained may be used for predicting the phenological changes of the species, especially in the Carpathian area, under the future influence of expected climate change. Assessments for spring and autumn phenology (buds burst -BB and foliation, flowering and leaves senescence) were carried out on a transect with a difference in altitude of 1000 meters, in phenological research areas located at 200 m, 700 m and 1200 m. At each altitude level, 100 trees of I and II Kraft classes were phenologically characterized: 50 trees on the south-facing slope (sunny exposure) and 50 on the north-facing slope (shade exposure).The phenological data were interpreted in relation to climate data recorded in each area by a HOBO U23 Pro v2 sensor. The site conditions of submesothermal climate in the low altitude area led to DOY (day of the year) values below 100. The phenological differentiation of populations is evident in relation with the altitude, while at the same altitudinal level the influence of the exposure was much lower. The gradiental values by altitude sectors highlighted the nonlinearity of the development of foliation phenophase, the value being lower in the first 500 m, where the beech is under the impact of the submesothermal climate. It has been proven both the dependence of the foliation onset depending on the cumulation of temperatures in relation to the DOY moment and also on the values recorded throughout the vegetative rest. The altitudinal gradiental values resulting for flowering in the first and second altitudinal half of transect also differentiate the stands, but are lower than that resulting for BB. The leaves senescence has a delay of 1.8 up to 2.4 days per 100 meters altitude, and the length of the vegetation season is reduced more sharply in the upper half of the analyzed altitudinal transect. The sub-mesothermal climate could be involved in condensation of spring phenophases in the stands of the lower half of the researched area. Our data may be used for predicting the phenological changes, especially in the Carpathian area, under the expected climate change.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1356
Author(s):  
Amanullah ◽  
Inamullah ◽  
Jawaher Alkahtani ◽  
Mohamed Soliman Elshikh ◽  
Mona S. Alwahibi ◽  
...  

Under the rice–wheat cropping system (RWS), the continuous cropping of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) deplete soil fertility, and reduce crop growth and total rice biomass. In RWS, both phosphorus (P) and zinc (Zn) deficiencies are considered important nutritional constraints for reducing rice crop growth rates (CGR) and total biomass/biological yield (BY). The objective of this experiment was to investigate the impact of phosphorus (0, 40, 80, 120 kg P ha−1) and zinc rates (0, 5, 10, 15 kg Zn ha−1) on CGR and BY of three rice genotypes [fine (Bamati-385) versus coarse (Fakhre-e-Malakand and Pukhraj)] in Northwestern Pakistan during summer 2011 (Y1) and 2012 (Y2). The results revealed that higher CGR at various growth stages and total BY was obtained with the integrated use of higher phosphorus (80 and 120 kg P ha−1) and zinc rates (10 and 15 kg Zn ha−1). The lower CGR and BY were recorded when P and Zn were not applied (control) or when P and Zn were applied alone. In the case of rice genotypes, the highest CGR and BY were recorded for the hybrid rice (Pukhraj) than the other two genotypes. The CGR was increased to the highest level at the heading stage as compared to tillering and physiological maturity. The increase in CGR had a positive impact on the total BY of rice cultivars. The increase in BY had a positive relationship with grain yield and grower’s income. It was concluded from the study that the combined application of higher P and Zn rates to the coarse rice genotypes (Fakhre-e-Malakand and Pukhraj) could increase CGR, total BY, crop productivity and profitability.


2005 ◽  
Vol 35 (3) ◽  
pp. 730-740 ◽  
Author(s):  
Nereu Augusto Streck

The amount of carbon dioxide (CO2) of the Earth´s atmosphere is increasing, which has the potential of increasing greenhouse effect and air temperature in the future. Plants respond to environment CO2 and temperature. Therefore, climate change may affect agriculture. The purpose of this paper was to review the literature about the impact of a possible increase in atmospheric CO2 concentration and temperature on crop growth, development, and yield. Increasing CO2 concentration increases crop yield once the substrate for photosynthesis and the gradient of CO2 concentration between atmosphere and leaf increase. C3 plants will benefit more than C4 plants at elevated CO2. However, if global warming will take place, an increase in temperature may offset the benefits of increasing CO2 on crop yield.


2018 ◽  
Vol 8 (3) ◽  
pp. 74
Author(s):  
Geng-Jian Zhou ◽  
Qiao-Xu Qin ◽  
Wei-Zhou Lin ◽  
Yuan-Biao Zhang

Over the past few decades, the Earth’s climate has undergone conspicuous changes, some of which have a profound impact on social and governmental systems. The purpose of this paper is to establish a model for measuring national fragile and the impact of climate change on a country. For this purpose, we first define the Fragile States Index (FSI) to measure the fragility of a country based on population, crime rate and education, which are the three aspects that most countries or regions will focus on. Second, we use the FSI to illustrate how climate change affects the Democratic Republic of the Congo. Third, we analyze the definitive indicators of Indonesia and predict the changes of FSI. Finally, the effects of each intervention policy were obtained by analyzing Indonesia’s intervention policy on environmental change. To provide ideas for intervention on climate change.


Sign in / Sign up

Export Citation Format

Share Document