scholarly journals Pulmonary Hypertension in Obese Mice Is Accompanied by a Reduction in PPAR-γ Expression in Pulmonary Artery

2021 ◽  
Vol 12 ◽  
Author(s):  
Any Elisa de Souza Schmidt Gonçalves ◽  
Guilherme Zweig Rocha ◽  
Rodrigo Marin ◽  
Rafael Ludemann Camargo ◽  
Andrey dos Santos ◽  
...  

Obesity and insulin resistance (IR) are well-studied risk factors for systemic cardiovascular disease, but their impact on pulmonary hypertension (PH) is not well clarified. This study aims to investigate if diet-induced obesity induces PH and if peroxisome-proliferator-activated receptor (PPAR-γ) and/or endoplasmic reticulum (ER) stress are involved in this process. Mice were maintained on a high-fat diet (HFD) for 4 months, and IR and PH were confirmed. In a separate group, after 4 months of HFD, mice were treated with pioglitazone (PIO) or 4-phenylbutyric acid for the last month. The results demonstrated that HFD for at least 4 months is able to increase pulmonary artery pressure, which is maintained, and this animal model can be used to investigate the link between IR and PH, without changes in ER stress in the pulmonary artery. There was also a reduction in circulating adiponectin and in perivascular adiponectin expression in the pulmonary artery, associated with a reduction in PPAR-γ expression. Treatment with PIO improved IR and PH and reversed the lower expression of adiponectin and PPAR-γ in the pulmonary artery, highlighting this drug as potential benefit for this poorly recognized complication of obesity.

2020 ◽  
Vol 88 (7) ◽  
Author(s):  
Catherine D. Shelton ◽  
Mariana X. Byndloss

ABSTRACT In high-income countries, the leading causes of death are noncommunicable diseases (NCDs), such as obesity, cancer, and cardiovascular disease. An important feature of most NCDs is inflammation-induced gut dysbiosis characterized by a shift in the microbial community structure from obligate to facultative anaerobes such as Proteobacteria. This microbial imbalance can contribute to disease pathogenesis by either a depletion in or the production of microbiota-derived metabolites. However, little is known about the mechanism by which inflammation-mediated changes in host physiology disrupt the microbial ecosystem in our large intestine leading to disease. Recent work by our group suggests that during gut homeostasis, epithelial hypoxia derived from peroxisome proliferator-activated receptor γ (PPAR-γ)-dependent β-oxidation of microbiota-derived short-chain fatty acids limits oxygen availability in the colon, thereby maintaining a balanced microbial community. During inflammation, disruption in gut anaerobiosis drives expansion of facultative anaerobic Enterobacteriaceae, regardless of their pathogenic potential. Therefore, our research group is currently exploring the concept that dysbiosis-associated expansion of Enterobacteriaceae can be viewed as a microbial signature of epithelial dysfunction and may play a greater role in different models of NCDs, including diet-induced obesity, atherosclerosis, and inflammation-associated colorectal cancer.


2018 ◽  
Vol 96 (5) ◽  
pp. 485-497 ◽  
Author(s):  
Samah M. Elaidy ◽  
Mona A. Hussain ◽  
Mohamed K. El-Kherbetawy

Targeting peroxisome proliferator-activated receptor-gamma (PPAR-γ) is an approved strategy in facing insulin resistance (IR) for diabetes mellitus (DM) type 2. The PPAR-γ modulators display improvements in the insulin-sensitizing and adverse effects of the traditional thiazolidinediones. Nitazoxanide (NTZ) is proposed as a PPAR-γ receptor ligand with agonistic post-transcriptional effects. Currently, NTZ antidiabetic activities versus pioglitazone (PIO) in a high-fat diet/streptozotocin rat model of type 2 diabetes was explored. Diabetic adult male Wistar rats were treated orally with either PIO (2.7 mg·kg−1·day−1) or NTZ (200 mg·kg−1·day−1) for 14, 21, and 28 days. Body masses, fasting blood glucose, IR, lipid profiles, and liver and kidney functions of rats were assayed. Hepatic glucose metabolism and PPAR-γ protein expression levels as well as hepatic, pancreatic, muscular, and renal histopathology were evaluated. Significant time-dependent euglycemic and insulin-sensitizing effects with preservation of liver and kidney functions were offered by NTZ. Higher hepatic levels of glucose-6-phosphatase and glucose-6-phosphate dehydrogenase enzymes and PPAR-γ protein expressions were acquired by NTZ and PIO, respectively. NTZ could be considered an oral therapeutic strategy for DM type 2. Further systematic NTZ/PPAR-γ receptor subtype molecular activations are recommended. Simultaneous use of NTZ with other approved antidiabetics should be explored.


2006 ◽  
Vol 72 (1) ◽  
pp. 42-52 ◽  
Author(s):  
Ryosuke Nakano ◽  
Eiji Kurosaki ◽  
Shigeru Yoshida ◽  
Masanori Yokono ◽  
Akiyoshi Shimaya ◽  
...  

2014 ◽  
Vol 34 (4) ◽  
pp. 830-836 ◽  
Author(s):  
Wai San Cheang ◽  
Xiao Yu Tian ◽  
Wing Tak Wong ◽  
Chi Wai Lau ◽  
Susanna Sau-Tuen Lee ◽  
...  

Objective— 5′ Adenosine monophosphate–activated protein kinase (AMPK) interacts with peroxisome proliferator–activated receptor δ (PPARδ) to induce gene expression synergistically, whereas the activation of AMPK inhibits endoplasmic reticulum (ER) stress. Whether the vascular benefits of antidiabetic drug metformin (AMPK activator) in diabetes mellitus and obesity is mediated by PPARδ remains unknown. We aim to investigate whether PPARδ is crucial for metformin in ameliorating ER stress and endothelial dysfunction induced by high-fat diet. Approach and Results— Acetylcholine-induced endothelium-dependent relaxation in aortae was measured on wire myograph. ER stress markers were determined by Western blotting. Superoxide production in mouse aortae and NO generation in mouse aortic endothelial cells were assessed by fluorescence imaging. Endothelium-dependent relaxation was impaired and ER stress markers and superoxide level were elevated in aortae from high-fat diet–induced obese mice compared with lean mice. These effects of high-fat diet were reversed by oral treatment with metformin in diet-induced obese PPARδ wild-type mice but not in diet-induced obese PPARδ knockout littermates. Metformin and PPARδ agonist GW1516 reversed tunicamycin (ER stress inducer)-induced ER stress, oxidative stress, and impairment of endothelium-dependent relaxation in mouse aortae as well as NO production in mouse aortic endothelial cells. Effects of metformin were abolished by cotreatment of GSK0660 (PPARδ antagonist), whereas effects of GW1516 were unaffected by compound C (AMPK inhibitor). Conclusions— Metformin restores endothelial function through inhibiting ER stress and oxidative stress and increasing NO bioavailability on activation of AMPK/PPARδ pathway in obese diabetic mice.


2019 ◽  
Vol 21 (1) ◽  
pp. 207 ◽  
Author(s):  
Yu-Chia Kao ◽  
Wei-Yen Wei ◽  
Kuen-Jer Tsai ◽  
Liang-Chao Wang

Although several epidemiologic and animal studies have revealed correlations between obesity and neurodegenerative disorders, such as Parkinson disease (PD), the underlying pathological mechanisms of obesity-induced PD remain unclear. Our study aimed to assess the effect of diet-induced obesity on the brain dopaminergic pathway. For five months, starting from weaning, we gave C57BL/6 mice a high-fat diet (HFD) to generate an obese mouse model and investigate whether the diet reprogrammed the midbrain dopaminergic system. Tyrosine hydroxylase staining showed that the HFD resulted in fewer dopaminergic neurons in the substantia nigra (SN), but not the striatum. It also induced neuroinflammation, with increased astrogliosis in the SN and striatum. Dendritic spine density in the SN of HFD-exposed mice decreased, which suggested that prolonged HFD altered dopaminergic neuroplasticity. All three peroxisome proliferator-activated receptor (PPAR) subtype (PPAR-α, PPAR-β/δ, PPAR-γ) levels were significantly reduced in the SN and the ventral tegmental area of HFD mice when compared to those in controls. This study showed that a prolonged HFD induced neuroinflammation, suppressed PPAR levels, caused degeneration of midbrain dopaminergic neurons, and resulted in symptoms reminiscent of human PD. To our knowledge, this is the first study documenting the effects of an HFD on PPARs in dopaminergic neurons.


Sign in / Sign up

Export Citation Format

Share Document